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ABSTRACT
This paper provides a systematization of knowledge in the domain
of integrated circuit protection through obfuscation with a focus
on the recent Boolean satisfiability (SAT) attacks. The study sys-
tematically combines real-world IC reverse engineering reports, ex-
perimental results using the most recent oracle-guided attacks, and
concepts in machine-learning and cryptography to draw a map of
the state-of-the-art of IC obfuscation and future challenges and op-
portunities.

1. INTRODUCTION
Two of the major security and privacy concerns in today’s inte-

grated circuit (IC) supply chain are 1) The threat of integrated cir-
cuit reverse engineering (RE), 2) the threat of malicious hardware
modifications known as hardware Trojans. IC reverse engineering
technologies have been constantly improving over the past decades
resulting in a near fully automated process for extracting various
kinds of information from modern ICs fabricated with nanometer
scale features [39, 25, 1]. The trend of globalization of IC man-
ufacturing has also continued, leaving designers in US with few
competitive trusted fabrication facilities. Fabless design houses
carry out high-profit design and intellectual property development
tasks while the complex and costly manufacturing services are out-
sourced to off-shored foundries [33].

Over the past couple of decades, various design-time techniques
have been proposed for thwarting the above threats [29]. The most
prominent of this techniques include: 1) IC camouflaging: based
on creating indistinguishable layout structures to hinder reverse en-
gineering by end-users; 2) Logic locking: to lock down a circuit
with active key bits that are programmed post-manufacturing hid-
ing away details from the foundry as well as the end-user; 3) Split-
manufacturing: manufacturing only part of the IC (e.g. Front End
Of Line layers) in the untrusted fab. The focus of this paper is on
the first two techniques and their security. Both of IC camouflaging
and logic locking can be classified as circuit “obfuscation” schemes
as they modify the design to obscure information away from the at-
tacker while maintaining its functionality.

The two most important question regarding circuit obfuscation
is whether they are secure and whether they can be implemented
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with low overhead. In 2015 a Boolean Satisfiability (SAT) based
attack [17, 38] was proposed that was shown to be able to deobfus-
cate a significant portion of existing low-overhead IC camouflaging
and logic locking schemes. Since then the problem of logic obfus-
cation/deobfuscation has reemerged. In this paper we will take a
systematic look at some of the most prominent circuit obfuscation
schemes discussed in literature with respect to the SAT attack and
beyond the SAT attack. The main contribution of the paper is that
it summarizes a broad range of adversary-models, recent attacks,
most resilient low-overhead obfuscation schemes, and the silicon
level technologies that enable them. This can help researchers iden-
tify the open problems in the domain.

The paper is organized as follows. We begin by first survey-
ing IC camouflaging and logic locking algorithms and their nano-
device primitives presented in prior work in Section 2. We then
discuss the various threats posed by end-users and the foundry and
the emergence of SAT attacks in Section 3. We evaluate the se-
curity of select circuit obfuscation schemes under these threats in
Section 4. Future directions are discussed in Section 5. Section 6
concludes the paper.

2. BACKGROUND
2.1 Integrated Circuit Supply Chain

The modern semiconductor industry operates on a global scale
with a distributed design, verification and fabrication network [33].
The fabless design model has shown to be productive for several
industries and it is predicted that it will continue to grow [33]. In
this model, the design and the verification are performed in the de-
sign house. Then the design layout in form of a GDSII file is sent
to the foundry. Fabrication, and possibly testing and packaging is
performed at the foundry and the devices are shipped back to the
designer for retail. The foundry has a special position in the IC
supply chain. It has possession of the layout of the device, there-
fore, all hard silicon features are known to the foundry and it has
the ability to maliciously modify the design.

Once the ICs arrive at the end-user’s disposal, the threat of phys-
ical reverse engineering begins. There are standard techniques and
automatic tools for an end-user to remove the IC package, scan the
IC layer by layer, image each layer and then use image-recognition
techniques to reconstruct the layout and subsequently the netlist of
the chip [40]. Furthermore, micro-probing technology allows the
attacker to read values stored in Flash or other active memories by
probing specific wires that carry the information [25].

2.2 IC Camouflaging
IC camouflaging is the idea of fabricating integrated circuits with

layout structures that are difficult to resolve to a certain functional-
ity. The building blocks of IC camouflaging are silicon structures
for which their functionality is difficult to determine through re-
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verse engineering with microscopy, or chemical and mechanical
processes [15]. Hence, designing these building blocks is a nano-
device fabrication problem. There is an array of such technologies
available [4, 11, 14, 10, 5] most of which are compatible with the
CMOS process. Since our paper’s focus is on the Boolean function
level we broadly classify all camouflaging devices into the follow-
ing categories of primitives:
• Connectors: these include metal-to-metal [10], or metal-to-

diffusion [12] connectors that are either connected that appear
unconnected, or unconnected that appear connected.
• Fixed Transistors: which are transistors that are always-on

or always-off regardless of the gate-terminal voltage [5, 6, 4].
There are various nano-device structures that are used to im-

plement each of the above primitives. A few that are important
for the purpose of this paper include: 1) Doping-based camouflag-
ing where two transistors with similar gate and contact structures
but different doping types behave differently creating fixed tran-
sistors or connector diodes [36, 36]; 2) Metal-to-metal vias with a
middle-gap [10]; 3) Mg/MgO metal-to-metal vias [9]; 4) Metal-to-
diffusion connectors with a thin insulating layer between the drain
and the contact arriving on top of it [12]; 5) Light-density-doping
(LDD) can also be used to render always-on or always-off transis-
tors [4].

Larger camouflaged functional units can be built using these prim-
itives: 1) camouflaged gates that implement different functionali-
ties using camouflaged connectors [28], 2) a single camouflaged bit
using a voltage divider with two camouflaged contacts or a fixed
transistor, 3) gates with dummy inputs using fixed transistors [21],
4) dummy paths using a wire and two fake metal-to-metal vias at
the end-points can be built. These unites can then be dispersed
throughout the netlist with different strategies [28] which are dis-
cussed further in Section 4.
2.3 Logic Locking

While the above camouflaging technologies make it difficult for
an end-user to reverse engineer the correct netlist from the layout,
the true functionality of the camouflaging units, such as which vias
are fake or true is still disclosed to the foundry. In order to prevent
the foundry from learning design secrets the secret should not be
part of the layout.

Logic locking is an obfuscation scheme that relies on active key-
inputs that are programmed on the chip after the chip returns from
fabrication effectively hiding them from the foundry [31]. The goal
is to have the circuit produce incorrect outputs for incorrect key val-
ues. At the silicon level, logic locking can be implemented either
with a dedicated tamper-proof memory feeding key values, or with
programmable primitives dispersed throughout the netlist. Some
possible programmable primitives are oxide-breakdown-based anti-
fuse devices, emerging non-volatile memory devices such as RRAMs
[43] and other non-volatile programmable devices whose state is
difficult to determine from microscopy.

At the functional level there are various strategies for logic lock-
ing. We can broadly categorize them into sequential logic lock-
ing and combinational logic locking. Combinational logic lock-
ing schemes corrupt the output of a directed-acyclic-graph (DAG)
circuit using key-inputs. Notable schemes include adding key-con-
trolled XOR/XNOR or MUX gates in randomly selected [31] or ju-
diciously selected [30, 27] locations in the circuit; replacing gates
with look-up-tables [7, 42] that store key-values; shuffling wires
with key-controlled switch-boxes [32, 43]; and a few other gate
insertion/replacement schemes [16].

Sequential logic locking schemes [8, 18] focus on adding dummy
states to the state-transition-graph (STG) of a sequential circuit. We
will focus on combinational obfuscation schemes in this paper as

they assume a stronger threat-model which is that the attacker has
access to all registers through the scan-chain. Furthermore, if a
secure combinational obfuscation scheme exists, simply obfuscat-
ing the state-generation function of a sequential circuit with that
scheme will result in a secure sequential obfuscation.

Logic-locking can be extended to prevent overproduction by in-
cluding a physical unclonable function (PUF) onto the chip apply-
ing a device-unique mapping to the key. With the PUF every fabri-
cated chip will have a different key value.

2.4 Circuit Diversification
Assume a circuit is implemented with a Boolean function co

there is a large set of Boolean circuits that implement the same
function, co ∈ C. Circuit diversification schemes [26, 24] try to
replace co with another circuit cd ∈ C such that it is difficult for
an attacker to find the structures in co given cd. For instance, by re-
placing pieces of logic with another randomly selected equivalent
circuit can potentially disguise an attacker-known structure in the
circuit preventing graph-isomorphism based component matching
in the netlist. Note that by itself this does not hinder recovery of
the netlist of cd which is functionally equivalent to co.
3. ADVERSARIAL MODELS

We will describe a classification of threats accounting for real-
istic reverse engineering reports such as [25]. The supply chain in
view of this categorization is depicted in Figure 1.

3.1 High-level Recognition
Typically the first step in IC reverse engineering is optically imag-

ing the chip. With optical images although transistor details in ad-
vanced technologies are not visible, the boundaries of memory ar-
rays, digital logic or analog blocks are recognizable. This allows
the attacker to establish a high-level knowledge of the position of
different components. Next the attacker can proceed with scanning
electron microscopy (SEM) and imaging to get down to nanometer
scale features of the chip.

In addition, the attacker can utilize micro-probing technologies
to probe accessible portions of the circuit. In order to probe the
circuit the adversary has to find the particular wires that she is in-
terested in such as the bus that carries the decrypted values from
Flash memory to the processor. It is intuitive that with some knowl-
edge of the high-level functionality and knowledge of the location
of important wires the attacker can probe accessible wires or at-
tach hardware Trojans to them for the case of a foundry adversary.
Therefore, it is safer to assume that an obfuscation scheme will pre-
vent hardware Trojan insertion only if it prevents high-level recog-
nition which as we discuss later can be rather difficult to prevent
using low-overhead obfuscation.

3.2 Netlist Recovery
A more difficult task for the adversary is to extract an unambigu-

ous circuit netlist from the IC. In this case if the circuit is cam-
ouflaged or locked the attacker will recover an obfuscated netlist
as seen in Figure 1. This obfuscated netlist can have camouflaged
components that can implement a set of possible functions, or the
netlist has a set of active key inputs that are unknown. Both cases
can be modeled as Boolean function ce : I ×K → O where I and
K are input and key space respectively, and there exists a correct
key k∗ such that ∀i ∈ I, ce(i, k) = co(i) where co is the unob-
fuscated circuit. In terms of deobfuscation accuracy there are two
cases:
• Exact Attack: the attacker wants to exactly find the original

netlist or a functional equivalent of it.
• Approximate Attack: the attacker can allow for some inac-

curacy in the attack.
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Figure 1: Integrated circuit life-cycle through obfuscation and deobfuscation (The chip image is from [1]).

Most recent and strong deobfuscation attacks assume that the
attacker also has access to an “oracle”, an unlocked or functional
circuit that returns correct outputs for chosen inputs. In this dimen-
sion the attacks can be categorized as:
• oracle-guided: the attacker can query the oracle circuit with i

and receive the output co(i).
• obfuscated-oracle-guided: the attacker can query the oracle

with i and will receive γ(co(α(i))) where α and γ are poten-
tially obfuscated functions.
• oracle-less: the attacker does not have access to an oracle.
Another significant aspects in evaluating the resiliency of logic

obfuscation schemes is assumptions on the physical reverse engi-
neering capabilities of the attacker. Attacks can be categorized in
this dimension by considering which of the following capabilities
the attacker has:
• the attacker can differentiate between doping types;
• attacker sees all connections as potentially-fake;
• attacker can differentiate between potentially-fake and true

connections;
• attacker can differentiate between fake and true connections.
Based on the abstract camouflaging primitive categorization in

Section 2.2 the above questions should cover the entire space of
attacker physical reverse engineering capabilities. To stress the im-
portance of these assumptions, we note that with the last assump-
tion none of existing camouflaging schemes would be secure, and
with the second assumption the simplest camouflaging schemes
would be extremely difficult to deobfuscate. Currently we know
that doping types are easily visible. There is no extensive docu-
mented efforts on breaking non-doping camouflaged connectors.

3.3 Evolution of Oracle-guided Attacks
The first works on logic locking proved the security of their

schemes by assuming that in order for the adversary to recover the
key the attacker has to solve the following equivalence equation
ce(i, k) = co(i) which is NP-complete due to alternating quanti-
fies and hence difficult to solve for k. However, the reasoning is not
accurate because the Boolean equation for co is not available to the
attacker. The oracle-guided threat model then arrived in the work
of Rajendran et al. [28] where they proposed that by sensitizing
the output of the circuit to a particular key-bit that key-bit can be
revealed through querying.

The SAT attack [17, 37, 34] which is the most recent and strongest
oracle-guided attack queries the circuit on input patterns that result
in disagreements for different key values. A novel aspect of the
SAT attack is that the circuit is modeled as a SAT formula and the
input-output observations are also stored as Boolean conjunctive
clauses in the SAT formula. This allows an efficient SAT solver
to wrestle with the NP-complete problem to both find disagree-
ing queries and find a key value that satisfies all of the observed
queries with high performance. The SAT attack shows great capa-
bility against most known logic locking schemes and camouflaging
schemes that replace a portion of gates in the design with camou-
flaged gates.

3.4 A General Model for Oracle-guided De-
obfuscation

It is possible to construct a set of general security criteria for
resiliency against deobfuscation. As was pointed out in [21, 34]
oracle-guided attacks against circuit obfuscation are equivalent to
learning a function with samples. The attacker begins with a set
of possible functionalities in a function space C. This set C es-
sentially denotes all the information that the attacker begins with
including the obfuscated netlist (without the obfuscated netlist it-
self as a hint, C will be the set of all possible circuits). Then the
attacker can query the oracle and use the observed information to
further prune C to get to the target function co.

Given this model, an obfuscation scheme is computationally se-
cure if there is no algorithm that will find co in time polynomial in
the circuit size. An obfuscation is information-theoretically secure
if there is no algorithm that finds co any better than random guess-
ing given infinite amount of time. In machine learning terms ap-
proximation can also be modeled using the probably-approximately-
correct (PAC)-learning scheme [2, 20]. In PAC-learning terms, an
obfuscation is computationally approximation resilient if there ex-
ists no polynomial time randomized algorithm A that can learn an
ε-approximation of the function co with success rate of 1−δ where
δ and ε are arbitrarily small.

4. CASE STUDY DEFENSES
4.1 Programmable Logic Blocks

Using programmable logic blocks have been suggested in liter-
ature as an obfuscation strategy [22, 42]. Various forms of pro-
grammable logic such as SRAM-LUT based FPGAs, Anti-fuse FPGA,
One-time Programmable PLAs, LUTs with doping based camou-
flaged configuration bits [36], LUTs with dummy via camouflag-
ing, etc. can be used as an obfuscated circuit wherein the config-
uration bits are the secret key. If the attacker cannot observe the
configuration bits the device appears to implement a large num-
ber of possible functionalities. Against high-level recognition, the
layout of programmable device fabrics has a repetitive structure so
that unlike an ASIC the optical images do not reveal logic bound-
aries. Essentially the circuit functionality is programmed electri-
cally rather than physically as in ASICs.

It is easy to show that programmable logic based obfuscation
is secure against key recovery if the input size is large. A pro-
grammable logic fabric that has g gates and reconfigurable inter-
connects, will implement all possible functions that can be imple-
mented by rearranging l gates if l� g. Due to the high expressive-
ness of the programmable logic each query will reveal the output of
the logic for only that particular input. Against oracle-guided ap-
proximation, the rate at which any algorithm learns the truth-table
of the programmable block is linear in the size of the truth-table
and thus for a large enough input size this rate can be slow.

The size of the programmable logic plays an important role. This
is the main reason why replacing small gates with small LUTs [42]
does not provide exponential security against SAT attacks. We ob-
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fuscated the c432 ISCAS benchmark circuit by replacing gates with
LUTs of various sizes and attacked it using our C++ SAT attack
framework1. As can be seen from Table 4.1 the number of neces-
sary queries and running time in seconds do not increase exponen-
tially with the number of small LUTs.

#LUT-inputs 2 3 5 6
#LUTs time #iter time #iter time #iter time #iter

4 0.02 8 0.04 24 0.18 68 0.72 171
8 0.03 20 0.12 62 0.53 132 2.2 234

16 0.15 41 0.39 95 1.53 183 3.12 282
20 0.18 46 1.03 156 1.97 205 3.37 276
32 0.58 81 1.82 152 2.06 205 2.58 257

Table 1: LUT insertion resiliency with respect to the number of
inputs to the LUT and the number of LUTs inserted.

While programmable units can provide possibly the maximum
level of security available from an obfuscation scheme, they come
at high area, power and delay costs. Averaged across different func-
tions, FPGAs can cost 30X more area, 3-4X more delay, and 10X
more power consumption [19]. Therefore, Liu et al. [23] proposed
replacing only critical modules in the design such as the instruction
decoder, in the case of a SPARC processor with FPGA fabric which
can reduce the overall overhead costs.

4.2 Point-function based Logic Locking and
IC Camouflaging

Since the advent of the SAT attacks several works have targeted
defeating the attack by utilizing special key functions that are hard
to break given oracle samples [21, 44, 45, 47]. A point-function
P (i, k) will return 0 for all i 6= k and 1 otherwise. This function
can be implemented by XORing bits in the k and i vectors and then
feeding the resulting bits into an AND-tree. For IC camouflag-
ing, small BUF/INV camouflaging gates can be used at the input
of the AND-tree and for logic locking programmable switches can
be used. It is easy to see that for this function querying i values
will not reveal k unless i = k which has a low probability if the
bit-length of i and k is large.

This idea of low activity key functions is the basis of all of the
proposed point-function schemes. Since the output corruptibility
of such schemes is low they have to be combined with other high-
corruptibility schemes such as random XOR/XNOR logic locking
or gate-replacement IC camouflaging.

While it is easy to see that all these schemes provide computa-
tional security against exact SAT attacks for large input sizes, they
fail to resist an approximation attack. This was exploited in the
work of Shamsi et al. [34] where an approximate SAT attack was
developed that stops the querying process early and justifies the
entire key vector. The returned key will have effectively solved
the high-corruptibility portions of the obfuscation. Thus only the
low-corruptibility obfuscation would remain which due to the fact
that it is corrupting the output for only a single input pattern, the
attacker has obtained a very good approximation of the original
circuit in polynomial queries. Hence point-function obfuscation
schemes lack resiliency against approximate oracle-guided attacks.

In addition, some of the point-function schemes are vulnerable to
structural and functional analysis [46]. In such attacks the attacker
performs a structural search in the circuit to find the point-function
block, and since most these schemes insert the point-function into
the circuit at a single-point removing it from the obfuscated circuit
will return the original circuit.

1All tests in this paper were run on a quad-core Intel Xeon E3 pro-
cessor with a 3.4GHz CPU, and 16GB memory.

Against high-level recognition, as stand-alone solutions these
schemes provide no security, since they have one point of entry
in the circuit so only a single wire is affected by the obfuscation
and the structure of the original circuit is largely preserved.

4.3 Layout Flooding
Since the SAT attack was proposed most researchers in academia

have shifted towards developing new obfuscation schemes that can
withstand the attack. For IC camouflaging the documented attacks
[17] were against gate-level IC camouflaging where randomly se-
lected or clique selected gates in the circuit are replaced with cam-
ouflaged gates that implement a possible set of three or four func-
tionalities.

A particular camouflaging scheme that was not analyzed under
the SAT attacks is present in a series of industrial patents and is
currently part of commercialized circuit camouflaging technologies
[13]. This scheme is based on flooding the layout of the circuit with
dummy gates and dummy wires and then connecting them to active
logic as seen in Figure 2.

Figure 2: Layout flooding from [13].
While adding a large number of dummy elements to the design

and filling empty areas of the chip with dummy logic can provide
difficulties during layout image recognition, the specific insertion
and connection algorithm determines SAT attack resiliency. The
algorithms discussed in [13] insert filler cells into the empty areas
of the layout and then connect them to active logic. However, the
connections are passive with respect to the original circuit, meaning
that the output of filler cells is not disrupting the functionality of the
original circuit. Therefore, other than hindering cell recognition
during layer-by-layer image analysis the defense does not affect
the SAT attack complexity.

Acyclic wire-flooding obfuscation scheme experiment. Along
the direction of layout flooding, we designed a dummy wire flood-
ing obfuscation scheme. In this scheme for a certain percentage of
the wires in the circuit we connect them to a number of randomly
selected location using a MUX effectively creating dummy paths
with the condition that no logical loops are created. We applied
this scheme to a set of randomly synthesized circuits of input-size
8 with a few 100 gates and report the results in Table 4.3. As can
be seen once the circuit is flooded with dummy paths the deobfus-
cation process becomes difficult. Around 50% coverage with more
than 8-input MUXs the attack becomes ineffective. However, the
overhead of adding all these dummy paths to 50% of the wires in
the circuit can be high.

%wires 10% 20% 30% 50%
MUX-size time #iter time #iter time #iter time #iter

2 0.06 10 0.29 17 0.54 28 2.22 38
4 0.29 19 1.02 22 2.89 41 27.3 68
6 0.48 20 1.91 25 10.1 47 1286 84
8 0.61 17 5.26 37 56 56 TO TO

Table 2: LUT insertion resiliency with respect to the number of
inputs to the LUT and the number of LUTs inserted.

Cyclic wire-flooding obfuscation. Shamsi et al. [35] recently
proposed a topological obfuscation scheme that uses camouflaged/programmable
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(a) (c)

(b) (d)

Figure 3: Cyclic camouflaging on the c1908 ISCAS bench-
mark where (a) and (b) are the original circuit, (c) shows the
dispersed camouflaging vias and (d) is the routed obfuscated
circuit. In Layout flooding schemes only wire overhead is in-
curred.
connectors to insert minimum number of dummy wires into the
logic to create “unresolvable loops”. If logical loops are created
in the circuit the SAT attack will not be able to proceed since the
obfuscated circuit can no longer be represented as a DAG. Hence
combining this idea with layout flooding schemes, such that not
only are all empty areas filled with dummy structures, but that many
unresolvable loops are also created can result in a low overhead
highly resilient obfuscation for ASICs. The looped structure of the
circuit graph adds an additional dimension to the complexity of the
SAT attack and therefore should result in higher attack complexi-
ties than acyclic flooding of the same size.

As for high-level recognition layout flooding schemes can poten-
tially create security. The dummy connections can make it difficult
for the attacker to find and trace specific wires or perform micro-
surgery to reach and probe arbitrary signals. Note that none of the
obfuscation schemes discussed thus far are resilient against arbi-
trary probing. A layout implementation of the cyclic obfuscation
scheme on the c1908 ISCAS benchmark can be seen in Figure 3.

4.4 Using Cryptographic Functions
Almost all IC camouflaging and logic locking schemes would

break if the attacker can observe a significant number of internal
signals. One of the most intriguing questions in cryptography over
the last few decades has been to see whether there exists a general
algorithm for obfuscating a function that remains secure even if
all internal variables are public [3]. Although it is still an open
problem, certain cryptographic primitives can be used to obfus-
cated specific functions providing security against probing. One
such example which can be useful in authentication is the hashed
password checking function. In this scheme a cryptographic hash
of a secret key is stored on the device and then a comparison with
this key is performed by taking the hash of the input and comparing
it to the stored value. In such a circuit reading internal values will
not reveal the password in plain-text.

It seems intuitive to utilize the numerous cryptographic blocks
in obfuscation schemes. For instance the hash password checker
can be used to raise a wire to signal the circuit to begin opera-
tion. Yasin et al. [48] also proposed inserting an AES block in the
path of the secret key before feeding the key bits to key gates in
logic locking. The security of the AES cipher against chosen plain-

text attacks would imply the security of such an obfuscation against
oracle-guided key-recovery. However, the main disadvantage of us-
ing cryptographic blocks in this way is that they can be vulnerable
to structural/functional search attacks. For instance, the single wire
that enables the circuit operation can be found and excluded from
the circuit returning the original circuit. The AES block can also
be found and simply removed from the circuit. Hiding these large
blocks within the circuit with strong security guarantees would be
very difficult and costly if not impossible.

5. FUTURE DIRECTIONS
5.1 Machine-learning Approaches

The existing SAT attacks are essentially machine-learning algo-
rithms that learn the original functionality of the obfuscated cir-
cuit given input-output samples. However, machine-learning ap-
proaches can be applied to attack other aspects of obfuscation schemes.
The obfuscation algorithm is public to the attacker and the synthesis
and place & route tools that are used are a source of statistical sig-
natures that can be detected through machine-learning. Generally,
a machine-learning problem can be formed where the obfuscation
algorithm, f was applied to the circuit and given samples of f the
attacker wants to learn f−1 to reverse the obfuscation. Further-
more, machine-learning schemes can be used for searching struc-
ture or functionality of the circuit for finding obfuscation blocks
such as point-functions and remove them from the circuit.

The reason for any machine-learning scheme to prevail in deob-
fuscation is that there exists small statistical variations in any obfus-
cation scheme that are dependant on the original circuit functional-
ity. Unlike cryptography where these small variations are studied
in depth and exploited in attacks, for circuit obfuscation this task
has lacked motivation since few such attack have been documented.
This direction also motivates designing algorithms that will destroy
such secret-dependant variations. Circuit diversification schemes
may be useful for this purpose.

5.2 Side-channel Attacks
The obfuscated circuit is physically implemented on a device.

Therefore, they are vulnerable to power, timing, and electromag-
netic side-channel attacks. Side-channels can reveal small statisti-
cal variations that are dependant on the key value. Thus far, most
proposals have simply suggested that side-channel attacks will not
be possible since the camouflaging elements that are used do not
have secret-dependant power consumption profiles. However, there
are various power models and higher order attacks that can be used.
Therefore, designing such attacks and then preventing them with
circuit and algorithmic solutions is a critical to the overall security.

5.3 Physical Aspects
The security of obfuscation schemes is significantly affected by

the resiliency of the camouflaging primitives. For instance, if cam-
ouflaging metal-to-metal via can be made for which the attacker
cannot differentiate between real and potentially-fake vias, it would
be extremely difficult to attack layout flooding and cyclic intercon-
nection camouflaging schemes. The ability of the attacker to tell
apart real silicon constructs from potentially camouflaged ones al-
lows the attacker to localize the uncertainty in the netlist to a frac-
tion of the entire design. This is key to the success of SAT attacks
on large circuits. This was also suggested in [41] where authors
assert that resilient camouflaging primitives that can become ubiq-
uitous in the netlist will create great attack complexity. Note that
for logic locking it is more difficult to use ubiquitous programmable
elements, due to the fact that each secret bit has to be programmed
requiring programming circuitry that will help the attacker identify
protected regions as well as creating additional overhead.
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Another instance that stresses the importance of physical as-
pects of obfuscation is doping-based camouflaging. Various works
[36] were published under the assumption that doping patterns can-
not be detected with microscopy, however, there exists several mi-
croscopy and chemical processes to detect doping types. Unfortu-
nately developing and securing camouflaging primitives is a nano-
fabrication research problem and is outside the scope of the EDA
community, however, it has a significant impact on the security
analysis at the functional level.

6. CONCLUSION
In this paper the state-of-the-art in IC protection through obfus-

cation was evaluated. In summary it was demonstrated that the
ubiquitous flooding of the circuit layout with camouflaging or pro-
grammable components and the utilization of cyclic circuit struc-
tures will substantially increase the complexity of reverse engineer-
ing attacks with low overhead. Further research into the design and
resiliency testing of camouflaging nano-structures is essential to the
the security of circuit obfuscation.
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