
Cyclic Obfuscation for Creating SAT-Unresolvable Circuits

Kaveh Shamsi1, Meng Li2, Travis Meade1, Zheng Zhao2, David Z. Pan2, and Yier Jin1

1ECE Department, University of Central Florida, Orlando, FL, USA
2ECE Department, University of Texas at Austin, Austin, TX, USA

1{kaveh, travm12}@knights.ucf.edu, 2{meng_li,zzhao,dpan}@utexas.edu,
1yier.jin@eecs.ucf.edu

ABSTRACT
Logic locking and IC camouflaging are proactive circuit obfusca-
tion methods that if proven secure can thwart hardware attacks such
as reverse engineering and IP theft. However, the security of both
these schemes is called into question by recent SAT based attacks.
While a number of methods have been proposed in literature that
exponentially increase the running time of such attacks, they are
vulnerable to “find-and-remove” attacks, and only slightly hide the
circuit functionality. In this paper, we present a novel approach
towards creating SAT attack resiliency based on creating densely
cyclic obfuscated circuit topologies by adding dummy paths to the
circuit. Our methodology is applicable to both IC camouflaging
and logic locking. We demonstrate that cyclic logic locking creates
SAT resilient circuits with 40% less area and 20% less delay com-
pared to an insecure XOR/XNOR-obfuscation with the same key
length. Furthermore, we show that cyclic IC camouflaging can be
implemented at the layout level with no substrate area overhead and
little delay and power overhead with respect to the original circuit.

1. INTRODUCTION
With the globalization of the IC supply chain and the advent of

fabless design houses, several security concerns have been raised [22].
These include reverse engineering by end-users, and malicious mod-
ification or overproduction by foundries. VLSI design for trust
(DfTr) [12] refers to design-time techniques for thwarting these
threats. Among them, IC camouflaging [4] and logic locking/-
encryption [14] are two promising directions. With these approaches
the designer can hide design information from a malicious foundry
or end-user. We therefore categorize both schemes as circuit ob-
fuscation, since they rely on the concept of “security through ob-
scurity”. IC camouflaging is based upon creating indistinguishable
silicon layout structures that hamper reverse engineering of the IC
by the end-user. In logic locking the circuit is augmented with addi-
tional key inputs such that it operates incorrectly without the correct
key values applied. Therefore logic locking can prevent reverse en-
gineering, as well as cloning or theft of intellectual property (IP) by
the foundry or any other party that does not posses the correct key.
Table 1 lists the protection provided by these circuit obfuscation
schemes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GLSVLSI ’17, May 10-12, 2017, Banff, AB, Canada
c© 2017 ACM. ISBN 978-1-4503-4972-7/17/05. . . 15.00

DOI: http://dx.doi.org/10.1145/3060403.3060458

Defense Reverse engineering Trojan Insertion Overproduction

IC Camouflaging by user only no protection no protection

Logic Locking by user & foundry by foundry by foundry

Table 1: Protection provided by obfuscation schemes against a
malicious end-user or foundry.

The security of these schemes has been the topic of research
over the past several years through a competition of obfuscation
defenses and deobfuscation attacks [11, 13, 5, 18]. Deobfuscation
attacks are developed under various assumptions on the capabili-
ties of the adversary. A prominent adversary-model in deobfusca-
tion assumes the attacker has access to the inputs and outputs of a
functional or unlocked chip. With such oracle-access to the chip
the attacker can query the circuit for different inputs and use cor-
rect input-output pairs to find the correct key values or camouflaged
functions. The most recent and strongest attack under this assump-
tion is a disagreement based approach that queries the oracle circuit
on input patterns that results in different outputs for different key
values or camouflaged function hypotheses [5, 18]. These patterns
are referred to as discriminating input patterns (DIP). Since the at-
tack is formulated as a Boolean Satisfiability (SAT) problem and
uses SAT-solvers, it is commonly referred to as the SAT attack. The
SAT attack is successful in deobfuscating almost all known gate-
level obfuscation solutions that have reasonable overhead [18].

To counter the SAT attack a number of defenses have been pre-
sented in literature [24, 26, 7, 23]. In these obfuscation schemes
it is ensured that each DIP removes a limited number of key pos-
sibilities and therefore, the SAT attack will require an exponential
number of queries to resolve the correct key. However, almost all
these defenses rely on large low-activity blocks that can either be
found and removed as was shown in [25], or are fundamentally ca-
pable of hiding only a few input patterns from the attacker due to
their low corruptibility [17].

In this paper we present a novel SAT-resilient obfuscation scheme.
This methodology is inspired by how configurable and cyclic inter-
connection networks allow modern programmable logic to imple-
ment a large set of Boolean functions with small logic components.
The key idea is that if a logical loop is created in the circuit (which
is typically avoided in prior work [16]), through adding dummy
wires and gates, the adversary cannot launch the existing SAT at-
tacks, since the circuit can no longer be represented as a directed
acyclic graph (DAG). We show that from a graph theoretic per-
spective the number of possible ways for opening these loops can
be made excessively large. In summary we make the following
contributions:

• We present cyclic obfuscation as the first topological, wire-based
approach to creating SAT attack resiliency;

173

http://dx.doi.org/10.1145/3060403.3060458

• We discuss implementation details for ensuring the hardness of
the attack, as well as silicon level techniques to implement the
idea in both of IC camouflaging and logic locking flavors;

• We implement prototype cyclic logic locking and cyclic IC cam-
ouflaging schemes using the Nangate OpenCell 15nm technol-
ogy library [1]. The results show both area and delay improve-
ments for for cyclic logic locking compared to traditional schemes,
and much smaller overheads for cyclic IC camouflaging.

The rest of the paper is organized as follows: Section 2 presents
background information and prior work. Section 3 discusses SAT
attack resiliency through topology obfuscation. Section 4 presents
our cyclic obfuscation scheme and security and implementation as-
pects. Section 5 presents experimental results and section 6 con-
cludes the paper.

2. BACKGROUND

2.1 Circuit Obfuscation
IC camouflaging. the goal in IC camouflaging is to prevent re-

covery of the netlist from layer-by-layer images of the IC. There
exists an array of industrial fabrication technologies for creating in-
distinguishable layout structures [4, 20]. Some notable techniques
include, using dummy vias, altering doping patterns, or using filler
cells. Dummy vias are metal-to-metal or metal-to-diffusion con-
tacts that appear to be connected from the top view while they are
not in fact conducting. Modifying doping patterns allows altering
the type of transistors or junctions while conventional IC imaging
techniques cannot detect the difference [8]. Dummy cells can also
be inserted in the empty areas of the chip and connected to active
logic. With these techniques, camouflaging logic units can be built
such that their overall Boolean function cannot be resolved to a
specific function. Inserting these camouflaged units with different
strategies creates obscurity during the reverse engineering process.
This can be seen in Fig. 1a.

Logic Locking. Figure 1b shows a circuit obfuscated with logic
locking. Logic locking was originally presented for hiding de-
sign details from the foundry and allowing for authenticated us-
age of the IC [14]. The first logic locking scheme was based on
XOR/XNORing randomly selected wires in the circuit with key in-
puts [14]. Later proposals included more complex strategies for im-
proving security. These techniques include inserting XOR/XNOR
or MUX gates at locations that maximize properties such as out-
put hamming-distance [9], or the size of cliques in the interference
graph of key inputs [10]. Interconnect obfuscation schemes were
also proposed such as shuffling wires in bus architectures [15],
combinational logic [21, 3], or most recently, inserting dummy
wires into the circuit through chip-level modification [16]. All of
these schemes avoid creating logical cycles in the circuit.

i3 G2

G1
i0
i1

i2

AND,

NAND?

i4

O0
AND,

XOR?

i3
G2

G1
i0
i1

i2

i4

O0G3

G3k0

k1

T
a
m

p
e
r-

p
ro

o
f

m
e
m

o
ry

(a) (b)

Figure 1: (a) IC camouflaging by replacing gates with camou-
flaged gates. (b) Logic locking with tamper-proof key inputs.

2.2 SAT Attacks
The SAT attack assumes the oracle-guided attack threat-model

where the attacker has input-output access to an operational chip
(as black-box) and a netlist of the obfuscated chip layout. The first
step in the SAT attack is to model the obfuscated circuit with a
Boolean function, Cenc, from input space I , and an obfuscation-
secret (key)1 space, K, to outputs (Cenc : K × I → O). For
logic locking this is a direct transformation. Most camouflaging
scheme can also be represented in such a form with polynomial
overhead. For instance, a camouflaged gate can be modeled as a
key-controlled MUX selecting among a set of possible functionali-
ties of the camouflaged gate.

The attack begins by satisfying a mitter SAT problem,Cenc(i, k1) 6=
Cenc(i, k2) with some i, k1, k2. The solution input, i, is called a
discriminating input pattern (DIP) since it differentiates k1 and k2.
i is queried on the black-box Co and the output yi is obtained. The
input-output relation, (Cenc(i, k1) = yi) ∧ (Cenc(i, k2) = yi), is
appended to the mitter SAT problem as a new constraint. The pro-
cess continues until no more DIPs can be found. At this point satis-
fying the constraints will return a key, k∗ ∈ K∗, which agrees with
the black-box on all the input-output observations and cannot be
differentiated by a query. El massed [5] showed that any key from
K∗ is necessarily a correct key (∀i ∈ I, Cenc(i, k∗) = Co(i)).
The SAT attack is successful in deobfuscating almost all tradi-
tional logic locking schemes [18], and gate-level IC camouflaging
schemes [5]. Furthermore, Shamsi et al. [17] extended the SAT
attack to include approximation which allows the SAT attack to ap-
proximate the original circuit defeating the recently proposed SAT-
resilient obfuscation schemes [24, 26, 7, 23].

3. SAT-RESILIENT OBFUSCATION

3.1 Security Criteria
Defining general and meaningful security criteria for circuit ob-

fuscation is an elusive task. However, in the context of SAT at-
tacks on combinational logic locking and camouflaging schemes
the following criteria can be defined: 1) High query complexity:
The query complexity measure, QC, of an obfuscated circuit,Cenc,
with black-box access to the original circuit, Co, is the minimum
number of queries required to resolve the key. 2) High corrupt-
ibility: the corruptibility measure of the obfuscation, Cr, captures
the effect of the key on the output. This can be defined as the dis-
agreement probability: Cr = Pri∈I, k∈K [Cenc(i, k) 6= Co(i)].
3) As for approximation resiliency which is a stricter criteria there
should not exist an algorithm that learns an ε-approximation of the
original circuit with a success rate of 1− δ where ε and δ are small
factors [17].

3.2 Existing Defenses Against SAT Attacks
A number of defenses against the SAT attack have been pro-

posed in literature [24, 26, 7, 23]. These methods all rely on lim-
iting the number of incorrect keys that each DIP can exclude. All
these methods require tree structures that will output 1 for only a
single input pattern and output 0 for all others. Therefore these
schemes have a very low output corruptibility [23] and are hence
all combined with high-corruptibility obfuscation schemes such as
XOR/XNOR locking etc. The low-corruptibility schemes are gen-
erally vulnerable to “find-and-remove” style attacks that search the
circuit structure or its function for the tree-like blocks and remove
1For most logic locking schemes the obfuscation secret or key is the
physical key. For IC camouflaging the key is an abstract variable
that decides the function of camouflaged logic. We will use key to
refer to both.

174

them as was shown in [25]. Furthermore, with the approximate
SAT attack the high-corruptibility schemes can be attacked inde-
pendent of the low-corruptibility obfuscation [17].

3.3 Obfuscating Topology
It is easy to see that a fully programmable function is difficult to

deobfuscate using the SAT attack. A functionXn : {0, 1}n×K →
{0, 1}, which we define to be a function that implements all 22

n

different Boolean functions from {0, 1}n to {0, 1} by configuring
k ∈ K, is secure against SAT attacks. Each query will reveal a
single entry in the truth-table and hence QC(Xn) = |I| = 2n. Fur-
thermore, corruptibility is high since the probability of predicting
the correct output given an incorrect key is no better than random
guessing. Approximation resiliency is also high since the rate of
discovering the truth-table is no faster than linear with respect to
the queries.

It is well known that modern programmable logic such as FPGAs
are practically fully programmable functions. An FPGA achieves
this large expressiveness through combining small LUTs with 6
or less inputs and programmable interconnects as seen in Fig. 2a
. With programmable interconnections, the small units can be ar-
ranged in different topologies to implement a large number of pos-
sible functionalities. A sea of AND/OR/NOT gates, plus a sea of
configurable wires is capable of implementing a prohibitively large
number of functionalities2.

With respect to SAT attacks, one difficulty in deobfuscating pro-
grammable interconnects is to model the fabric with an acyclic
Boolean circuit of keys and inputs. When reverse engineering a
sea of programmable wires, any terminal on a logic unit can po-
tentially be connected to any other logic unit. Therefore, in the
graph model of such a circuit there are many edges and potentially
many loops. However, existing SAT attacks require an directed
acyclic graph (DAG) to begin the attack. It seems that at least addi-
tional abstract key-bits are required to represent the cyclic topology
as a DAG. Cyclic obfuscation exploits this idea to create a highly
complex circuit structure in ASICs without incurring the high over-
heads of fully programmable logic (30X area, 3X delay, and 10X
power). Note that if such overhead is acceptable simply using pro-
grammable devices and using the configuration bitstream as the key
is a secure defense against SAT based deobfuscation.

LUT LUT

LUTLUT

SB
i1
i2

?
?

?
?

?

?

?

?

?

?

?
? ?

?

O1
O2

?
?

(a) (b)

Figure 2: (a) FPGA programmable logic with configurable in-
terconnects. (b) A circuit with known components but un-
known interconnects is greatly unintelligible.

4. SECURE AND LIGHT-WEIGHT CYCLIC-
OBFUSCATION

While it is possible to flood the circuit with dummy interconnec-
tions to achieve a highly complex and expressive cyclic structure,
2Note that having g gates and infinite interconnect resources may
not implement all 22

n

Boolean functions but for sufficiently large
values of g implements a prohibitively large number of functions
for an attacker to prune.

our light-weight cyclic obfuscation scheme relies on using the min-
imum number of dummy edges to create loops that are difficult to
remove.

We will model circuits with a directed graph. Consider the orig-
inal Boolean circuit Co as seen in Fig. 3. In the graph representa-
tion of Co, input wires are represented by nodes with no incoming
edges. Similarly, output wires are represented by nodes with no
outgoing edges. Each gate is represented by a node where the gate
inputs are incoming edges and the gate output is represented by
outward edges. The fanout cone of a node u includes every node
v reachable from u, and the fanin cone of u includes every node v
that can reach u.

i3 g1

g0
i0
i1

i2

i4

O1

g2

g3

O0

O1

O0

i3

i0
i1

i2

i4

g1

g2

g0

g3

Figure 3: Directed graph model of Boolean circuit.

4.1 Creating Hard Loops
We can begin adding edges to the circuit DAG to create logical

loops. In order for an edge to create a logical loop it has to con-
nect a node in the fanout cone of u to a node in the fanin cone of
u which will create a loop with u being on the loop. The goal of
the defender is to first ensure that there are more than one ways to
open the loop, all of which are feasible from the attacker perspec-
tive. Furthermore, the defender wants to maximize the number of
possible ways to open this loop. These require two conditions that
are discussed herein.

CONDITION 1. Any created loop has to be non-reducible.

Given a general cyclic graph the problem of finding edges in
the graph to remove to obtain an acyclic graph is known as the
feedback arc set problem [2] which is NP-complete. However, the
NP-complete hardness of this problem may not necessarily be used
to ensure the difficulty of recovering the original acyclic circuit in
our case. The inputs and outputs of a circuit graph are known as
sources and sinks to the attacker which help infer a general direc-
tion in the graph and potentially remove edges that oppose this di-
rection. More precisely, a cyclic circuit graph is a flow-graph [6].

Flow-graphs and loops are studied in depth in the context of pro-
grams [6]. Loops in flow-graphs can be reducible or non-reducible.
If a flow-graph has only reducible loops, the depth-first-search (DFS)
traversal of this graph is unique. This unique DFS tree will allow
all reducible loops to be opened by removing a unique set of edges
which can be found efficiently. Since this would be greatly detri-
mental to the security of cyclic obfuscation any loop created during
the obfuscation has to be non-reducible. A sufficient condition for
a loop to be non-reducible is for it to have multiple entry points.
An entry point in a loop is an edge arriving on one of the vertices
in the loop from a vertex outside the loop.

Example: Consider graph in Fig. 4a. In this graph if we add
edge e3, the loop {e1, e2, e3} is reducible since it has a single en-
try through g1 and in the DFS traversal of this graph e3 will always
be a backward edge. On the other hand in graph Fig. 4b, the loop
{e1, e2, e3} is non-reducible since if we enter the loop from g1, e2
will be a backward edge, but if we enter the loop from g2, a differ-
ent edge, e1, will be opposing the flow.

175

reducible loop

with single

entry-point

irreducible loop

with two

entry-points

g1 g1

e1 e2

e3

e1 e2

e3

g2

(a) (b)

Figure 4: Reducible and non-reducible loops.

CONDITION 2. At least n ≥ 2 edges in a loop have to be “re-
movable”. This will result in a loop complexity of 2n.

An edge is removable if 1) the attacker is able to modify the key
to remove that edge from the graph; 2) removing the edge through
a key value, should not create gates with no inputs or no outputs.
Otherwise, even though the edge removal is controlled by the key,
its removal is not possible without introducing errors into the cir-
cuit.

Example: In the graph in Fig. 4b, if the removal of edge e1 is
controlled by a key-bit it would still not be a removable edge, since
removing e1 will leave the gate, g1, with no outputs.

If an edge is removable, then it creates a dilemma for the attacker
during reverse engineering. If a loop has n removable edges, there
are
(
n
m

)
ways to open it by removing m edges. Thus in total there

are
∑n

m=1

(
n
m

)
= 2n − 1 ways to open a loop with n removable

edges.

4.2 Dummy Logic as Extra Nodes
Thus far we only discussed adding edges (wires) to the design

to create obscurity. However, dummy gates can also be added to
the circuit as extra nodes and included in loops. This will have
the following benefits: 1) inserting dummy gates in realistic de-
signs can have a virtually zero area overhead, since they can be
inserted in empty areas that would be otherwise filled with filler
cells. Therefore, dummy gates can be easily used to increase the
length of a given loop at no cost. 2) As was discussed, for an edge
to be removable, its removal should not result in a gate with empty
fanout or fanin. However, if the attacker is faced with the possibil-
ity of dummy cells, this condition can be relaxed, since if the gate
is dummy it can have an empty fanout or fanin.

4.3 Light-Weight Implementation Algorithm
We will first discuss a logic locking implementation of the obfus-

cation scheme. For logic locking, from a graph level, we first need
to identify a path (v1, v2) and make sure that at least one node be-
tween v1 and v2 has more than one incoming edges to ensure the
non-reducibility of the loop. If this is the case then we can feed v2
back into v1. We then have to ensure that edges on this loop are
removable.

To create removable feedback wires we can either use a gate to
nullify the effect of a a wire on a gate as seen in Fig. 5a, or use
a MUX gate to select between two wires as seen in Fig. 5b. To
make edges along the path (v1,v2) removable, depending on the
fanout count of the nodes on the path we can use one or two MUX
gates to implement this as is discussed in the bellow example. a
general algorithm for performing the above cyclic logic locking is
presented in Algorithm 1.

Example: Per Fig. 6, we first feedback the wire w3 into w0 and
then we need to make the edges on the path (w1, w3) removable.
For wire w1, the wire already connects to more than one location.
Therefore, simply including the MUX gate, M1, in this path will
allow the key-bit k1 to open this edge. When k1 opens the loop, the

Algorithm 1 Obfuscate circuit Co with N loops of length M (attack
complexity is (2M)N).

1: function CYCLICOBFUSCATE(Co, N , M)
2: while loops found < N do
3: repeat
4: u← random gate from Co

5: start DFS at u to find path of length M
6: until path of length M found
7: feed v back to u
8: for each g on path (u, v) do
9: if fanoutSize(g) = 1 then
10: make g removable with two MUXs
11: else
12: make g removable with single MUX
13: end if
14: end for
15: end while
16: end function

input of gate g2 is fed from a randomly selected wire in the circuit
r0. For the wire w2 however, since it is driving the gate g2 only,
two MUXs are used to make this edge removable. First,M2 selects
between w2 and the random wire r1. Second, M3 is used to open
a path from w2 to a randomly selected location r2. MUXs M2 and
M3 are controlled by the same key-bit k2 which will remove the
edges from the loop and redirect them to other locations.

For IC camouflaging a similar procedure can be used, except that
MUXs in IC camouflaging can be implemented with dummy vias
with virtually zero gate area overhead as seen in Fig. 7. Even for
the case of logic locking one-time-programmable contacts, such
as anti-fuse vias, high Ron/Roff non-volatile memory devices, or
other metal-to-metal programmable switches can be used to im-
plement a light-weight and non-volatile MUX element for cyclic
logic locking. We note that cyclic obfuscation heavily relied on
the security of such silicon level techniques. We allow the attacker
to tell the difference between true vias and potentially-true vias,
however, the attacker should not be able to tell apart true and fake
vias. For instance, doping based programmable/camouflaged con-
nections can be revealed with selective etching, or capacitive imag-
ing [19] and should not be used, whereas Mg/MgO connections
[3] are more difficult to differentiate at least with current scanning
electron microscopy techniques.

5. EXPERIMENTATION RESULTS
We implemented cyclic obfuscation in both IC camouflaging and

logic locking. We begin with cyclic logic locking. The bench-
mark netlists were analyzed and modified using a C++ framework.
Synthesis and delay and area characterization were performed us-
ing Design Compiler (DC) with the Nangate OpenCell 15nm li-
brary [1]. It is important to inform the synthesis tool that the loops
created in the circuit are not part of the critical path. Otherwise
the synthesis tool will try to fix design-rule violations for such
paths which would create large unnecessary overheads. The results
for cyclic logic locking on the c432 ISCAS benchmark circuit are
shown in Table 3. Since c432 is the smallest benchmark, overhead
trade-offs are more significant. Larger circuits will have negligible
overheads.

We then applied the cyclic logic locking to a larger set of ISCAS
and MCNC benchmarks as shown in Table 2, for N = 6 (loop
count) and M = 6 (loop length). The same benchmark circuits
were obfuscated with a traditional random XOR/XNOR obfusca-
tion with the same number of key-bits (72). The area and delay
results from synthesis in the 15nm OpenCell library are shown in
Figs. 8 and 9 which shows the feasibility of a low overhead im-
plementation of cyclic logic locking in comparison with traditional
methods. Note that SAT resilient proposals [24, 26, 7, 23] are not

176

g1

w1

w0

k0
g1g1w1

w0
g1

w0

k0

g1g1
w1

w0
w1(a) (b)

Figure 5: Add-edge operations: (a) Nullify with key-gate. (b) Choose with key-controlled MUX.

g2g2

g1g1

g3

w1

w2 w3

w0
M1

M2

M3

M0

k0
k1

k2 k2
r0 r1

r2

g1g1
g3

w1
w2 w3

w0

r0 r2

g2g2

r1

Figure 6: Cyclic logic locking example ensuring the removabillity of edges on path.

Dummy or

Programmable

Contacts

o

i1i2

i1

o
i2

i1

k

i2
o

M
U

X

Figure 7: 2-to-1 MUX with dummy contacts or one-time-
programmable vias.

ISCAS MCNC
circuit #inputs #outputs #gates circuit #inputs #outputs #gates
c432 36 7 160 apex2 39 3 610
c499 41 32 202 ex5 8 63 1055
c880 60 26 383 i9 88 63 1315
c1355 41 32 546 i7 199 67 1581
c1908 33 25 880 k2 46 45 1815
c2670 157 64 1193 ex1010 10 10 5066
c3540 50 22 1669 des 256 245 6437
c5315 178 123 2307
c7552 207 108 3512

Table 2: Benchmark circuits adopted from [18]. Gate count is
in terms of number primitive gates.

included in the comparison since they all utilize XOR/XNOR ob-
fuscation internally to increase corruptibility.

As for cyclic IC camouflaging, we created a set of dummy vias
and MUXs using Cadence Virtuoso and utilized them in Encounter
as part of a physical-only library. As seen in Figure 10c the dummy
vias are automatically placed and routed using Encounter. Our lay-
out experiments with three benchmark circuits, c432, c1908 and
c3540 showed that with a core utilization of 70%, the cyclic camou-
flaged circuit does not increase the core area and only contributes to
additional congestion and wire-length. The maximum wire-length
increase was for 8 cycles of 6 edges long inserted in the c1908
benchmark circuit with 32% wire-length overhead and all designs
converged without design-rule violations. Accurate delay and power
overhead analysis require capacitance details from the camouflaged
vias, however, by assuming capacitance values of two crossing
wires for the fake vias, delay overhead was a maximum of 6.2%
and power overhead was a maximum of 5% for 8 cycles of length 8
across the benchmarks. Extensive layout implementation and char-
acterization is a topic of our future work.

6. CONCLUSION
In this paper a novel approach towards thwarting SAT attacks

was proposed based on creating interconnection cyclic obscurity.
The method is applicable to both logic locking and IC camouflag-
ing and as was demonstrated in this paper can be performed with
very low performance and area overhead. While the current SAT
attacks are incapable of reverse engineering cyclic circuits, investi-
gating novel oracle-guided attacks that are able to model such cir-
cuits is essential to further evaluating the security of cyclic obfus-
cation. Extensive layout level characterization and implementation
utilizing dummy gates is also a significant future direction.

7. REFERENCES
[1] Nangate freepdk15 open cell library. http://www.nangate.com/?page_id=2328.
[2] P. Charbit, S. Thomassé, and A. Yeo. The minimum feedback arc set problem is

np-hard for tournaments. Combinatorics, Probability and Computing,
16(01):1–4, 2007.

[3] S. Chen, J. Chen, D. Forte, J. Di, M. Tehranipoor, and L. Wang. Chip-level
anti-reverse engineering using transformable interconnects. In Proc. IEEE Int.
Symp. Defect and Fault Tolerance in VLSI and Nanotechnology Systems, pages
109–114. IEEE, 2015.

[4] R. P. Cocchi, J. P. Baukus, L. W. Chow, and B. J. Wang. Circuit camouflage
integration for hardware ip protection. In Proc. Design Automation Conf., pages
1–5. IEEE, 2014.

[5] M. El Massad, S. Garg, and M. V. Tripunitara. Integrated circuit (ic)
decamouflaging: Reverse engineering camouflaged ics within minutes. In
NDSS, 2015.

[6] M. S. Hecht and J. D. Ullman. Characterizations of reducible flow graphs.
Journal of the ACM (JACM), 21(3):367–375, 1974.

[7] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z. Pan. Provably
secure camouflaging strategy for ic protection. In Proc. Int. Conf. on Computer
Aided Design, page 28. ACM, 2016.

[8] S. E. Quadir, J. Chen, D. Forte, N. Asadizanjani, S. Shahbazmohamadi,
L. Wang, J. Chandy, and M. Tehranipoor. A survey on chip to system reverse
engineering. ACM Journal on Emerging Technologies in Computing Systems
(JETC), 13(1):6, 2016.

[9] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri. Logic encryption: A fault
analysis perspective. In Proc. Design, Automation and Test in Eurpoe, pages
953–958, 2012.

[10] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri. Security analysis of logic
obfuscation. In DAC, pages 83–89, 2012.

[11] J. Rajendran, O. Sinanoglu, and R. Karri. Vlsi testing based security metric for
ic camouflaging. In Proc. IEEE Int. Test Conf., pages 1–4. IEEE, 2013.

[12] J. Rajendran, O. Sinanoglu, and R. Karri. Regaining trust in vlsi design:
Design-for-trust techniques. Proceedings of the IEEE, 102(8):1266–1282, 2014.

[13] J. Rajendran, H. Zhang, C. Zhang, G. S. Rose, Y. Pino, O. Sinanoglu, and
R. Karri. Fault analysis-based logic encryption. IEEE Trans. on Computers,
64(2):410–424, 2015.

[14] J. A. Roy, F. Koushanfar, and I. L. Markov. Epic: Ending piracy of integrated
circuits. In Proc. Design, Automation and Test in Eurpoe, DATE ’08, pages
1069–1074, 2008.

177

http://www.nangate.com/?page_id=2328

Table 3: Loop count and length versus loop complexity (number of possible ways to open loops), and delay/area overhead% for the
c432 circuit. loop complexity can be a measure of security.

cycle length 3 4 6 8 12

cycle count area delay comp area delay comp area delay comp area delay comp area delay comp

2 12.21 2.88 64 24.59 5.08 256 19.07 11.47 4096 18.12 11.95 104 29.74 13.19 107

3 17.93 6.07 512 17.74 7.64 4096 24.02 9.31 105 46.88 43.79 107 50.89 16.04 1010

4 20.21 4.42 4096 23.64 7.41 104 28.02 18.34 107 46.50 16.07 109 52.41 14.22 1014

6 23.45 8.02 105 34.31 -3.40 107 39.45 22.58 1010 76.60 46.30 1014 102.51 44.64 1021

8 48.22 36.40 107 50.50 38.27 109 54.50 14.47 1014 91.85 30.31 1019 111.85 36.81 1028

0

50

100

150

200

xor cyclic

Figure 8: Area overhead of cyclic logic locking with 6 loops of length 6 versus XOR/XNOR locking with the same number of key-
bits(72).

-20

0

20

40

60

80

100
xor cyclic

Figure 9: Delay overhead (M = N = 6).

(a) (b) (c) (d)

Figure 10: Layout-level cyclic camouflaging with 4 loops of length 4 on the small c432 circuit. Figure (a) shows the original circuit
and Figure (b) shows the original routing. In Figure (c) the placement of the dummy vias are shown. As seen from Figure (d) the
routed camouflaged circuit only contributes to wire overhead.

[15] J. A. Roy, F. Koushanfar, and I. L. Markov. Protecting bus-based hardware ip by
secret sharing. In Proceedings of the 45th annual Design Automation
Conference, pages 846–851. ACM, 2008.

[16] B. Shakya, N. Asadizanjani, D. Forte, and M. Tehranipoor. Chip editor:
leveraging circuit edit for logic obfuscation and trusted fabrication. In
Proceedings of the 35th International Conference on Computer-Aided Design,
page 30. ACM, 2016.

[17] K. Shamsi, M. Li, T. Meade, Z. Zhao, Y. Jin, and D. Z. Pan. Appsat:
Approximately deobfuscating integrated circuits. In Proc. IEEE Symp.
Hardware-Oriented Security and Trust. IEEE, 2017.

[18] P. Subramanyan, S. Ray, and S. Malik. Evaluating the security of logic
encryption algorithms. In Proc. IEEE Symp. Hardware-Oriented Security and
Trust, pages 137–143. IEEE, 2015.

[19] T. Sugawara, D. Suzuki, R. Fujii, S. Tawa, R. Hori, M. Shiozaki, and T. Fujino.
Reversing stealthy dopant-level circuits. In Cryptographic Hardware and
Embedded Systems, pages 112–126. Springer, 2014.

[20] A. Vijayakumar, V. C. Patil, D. E. Holcomb, C. Paar, and S. Kundu. Physical
design obfuscation of hardware: A comprehensive investigation of device and

logic-level techniques. IEEE Transactions on Information Forensics and
Security, 12(1):64–77, 2017.

[21] T. F. Wu, K. Ganesan, A. Hu, H.-S. P. Wong, S. Wong, and S. Mitra. Tpad:
Hardware trojan prevention and detection for trusted integrated circuits, 2015.

[22] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor. Hardware
trojans: Lessons learned after one decade of research. ACM Transactions on
Design Automation of Electronic Systems (TODAES), 22(1):6, 2016.

[23] Y. Xie and A. Srivastava. Mitigating sat attack on logic locking.
http://eprint.iacr.org/2016/590.pdf.

[24] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu. Sarlock: Sat attack
resistant logic locking. In Proc. IEEE Symp. Hardware-Oriented Security and
Trust, pages 236–241, 2016.

[25] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran. Security analysis of
anti-sat. https://eprint.iacr.org/2016/896.pdf.

[26] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran. Camoperturb: secure
ic camouflaging for minterm protection. In Proc. Int. Conf. on Computer Aided

Design, page 29. ACM, 2016.

178

	Introduction
	Background
	Circuit Obfuscation
	SAT Attacks

	SAT-Resilient Obfuscation
	Security Criteria
	Existing Defenses Against SAT Attacks
	Obfuscating Topology

	Secure and Light-Weight Cyclic-Obfuscation
	Creating Hard Loops
	Dummy Logic as Extra Nodes
	Light-Weight Implementation Algorithm

	Experimentation Results
	Conclusion
	References

