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Abstract—Deep learning (DL) based profiling side channel
analysis (SCA) pose a great threat to embedded devices. An ad-
versary can break the target encryption engine through physical
leakage of power or electromagnetic (EM) emanations collected
from a profiling device. However, creating a successful DL based
SCA model relies on a large amount of data. This presents a
large barrier to those interested in applying DL for SCA. In
this paper, we propose a novel attack mechanism that adopts
meta-transfer learning to transfer DL networks among target
devices by judiciously extracting information from a profiling
device even using different side-channel sources. Supported by
our method, a cross-device and/or cross-domain SCA attack
becomes possible among different designs. In comparison to
previous attack methodologies, we significantly reduce training
costs and the number of traces (< 3 for power and < 8 for
EM) required for SCA attacks on both unprotected or masked
Advanced Encryption Standard (AES) implementations.

I. INTRODUCTION

Profiled side channel analysis (SCA) are attacks typically
targeting cryptographic circuits in which an adversary exploits
vulnerabilities of hardware implementations to recover secret
information, e.g., encryption keys. In order to apply the attack,
an adversary first obtains a profiling device under their control
and then attacks a target device using the same side-channel
leakage. The profiling SCA is itself a type of Template
Attack. Template attack generates a statistical model using
the profiling device and applies this model to attack target
devices [1], [2].

Recently, researchers enhanced the attack method by apply-
ing deep learning (DL) techniques, making the profiled attack
more powerful. For instance, Maghrebi et al. [3] introduced an
attack method that applies deep convolution neural networks
(CNNs) to recover secret keys from either unprotected or
masked Advanced Encryption Standard (AES) implementa-
tions. Picek et al. [4] further improved DL based profiled side
channel attacks in the presence of imbalanced data. Kim et
al. [5] demonstrated that adding noise to input power traces
can help an adversary boost the performance of a DL model.
However, their performance rapidly degrades if the training
set, generated by traces from the profiling device, slightly
deviates from the measurements from the target device.

To address this issue, researchers further proposed to lever-
age DL models to eliminate the cross-device variations. Das
et al [6] trained the DL model on augmenting traces collected
from multiple devices and used the model to break a target
128-bit AES encryption module. Bhasin et al. [7] introduced

an attack method which considered the device variation during
a profiled SCA attack and further evaluated the portability of
the attack. Zhang et al. [8] proposed to utilize frequency and
learning based power analysis to address the challenges caused
by device variations. However, these DL based side channel
attacks routinely depend on the availability of large amounts
of training data, which presents a large barrier to those who
are interested in using DL for SCA.

To address these challenges, one research direction is to
reduce the required traces from a profiling device so that
the training cost can be lowered. For example, Thapar et al
[9] implemented a DL based SCA attack that uses transfer
learning to reduce the number of profiling traces required
to recover secret keys from the same or a different device.
Similarly, Genevey-Metat et al. [10] used transfer learning to
show that it can improve the efficiency of power and/or EM
based SCA on various devices.

Motivated by these works, in this paper, we further extend
DL based profiling attacks and propose a novel cross-device
and cross-domain SCA attack. Specifically, we apply the
concept of meta-transfer learning to transfer DL networks to
the target device by judiciously extracting information from
a profiling device. We call the new attack Meta-Transfer
Learning based Side Channel Attack (MTL-SCA). Unlike
traditional transfer learning methods, the proposed attack can
make the pre-trained model of the profiling device easier to
be adapted to a new target device. As a result, the proposed
attack method can significantly reduce the training cost and
the amount of traces from the target device. To the best of our
knowledge, it is the first time to apply meta-transfer learning
technique into side-channel attacks.

To summarize, we make the following contributions:
• We propose a novel cross-device/domain attack mecha-

nism, named MTL-SCA, which leverages the advantages
of both meta learning and transfer learning for the ef-
ficient SCA attacks from both unprotected or masked
cryptographic circuits.

• We use a simple and efficient measure, known as Pear-
son product-moment correlation coefficient (PPMCC), to
evaluate the similarity across devices of the same and
different types. Our MTL-SCA can be more effective if
the inter-device PPMCC value is larger.

• We evaluate the proposed attack on a group of devices
with different microprocessors. The experimental results
demonstrate that the MTL-SCA method can recover the
secret keys from AES implementations with as few978-1-6654-3274-0/21/$31.00 ©2021 IEEE



Figure 1: Overview of the proposed meta-transfer framework for profiled side-channel attacks: (a) Pre-training the DL model
on the labelled profiling dataset; (b) Fine-tuning the trained DL model on target dataset using the meta-transfer learning; (c)
Applying DL models on newly collected side channel traces from the target devices.

as 3 traces on the same type of microprocessors. For
cross-device and cross-domain attacks, our method only
requires a few hundreds of traces.

II. PRELIMINARIES

A. Deep Neural Network

A typical Deep neural network (DNN) model consists of a
cascade of multiple computational layers such as convolution,
pooling and fully-connected layers, which learn to perform
automatic data processing and transformation. Each hidden
layer of deep neural networks has a set of neurons. These
neurons are usually connected to previous hidden layer and
utilize activation functions such as sigmoid, tanh and rectified
linear unit (ReLU) to transform its input data into output
vectors. The use of DNN models often includes two phases,
training and inference. During the training phase, the model’s
parameters (e.g., weights) in each hidden layer are initialized
at the beginning and then are optimized based on the training
dataset. In this paper, the training dataset includes power and
EM traces. During the inference phase, the pre-trained model
is utilized to make predictions on new input data.

B. Profiled Side-channel Attack

Profiled side-channel attacks have posed a great threat to
embedded devices. Adversaries assume that they have full
access to an identical copy of the target device running the
same cryptographic algorithms. The adversaries can collect
the physical side channel leakages (e.g., power or EM) while
providing the copy device with any set of plaintext and chosen
keys. These captured traces can then be utilized to train
DNN models. Adversaries can then use these trained models
to recover secret keys from target devices. Under similar
circumstances, an adversary hopes to only need one trace from
the target device for efficient key recovery. However, device
variation usually makes it difficult for an adversary to conduct
such attacks [8]. An adversary usually need tens to thousands,
if not millions, of traces to break the target device.

C. Meta-transfer Learning

Meta-transfer learning aims to leverage the advantages of
both transfer learning and meta learning to boost the perfor-
mance of deep neural network models [11]–[13]. Specifically,
meta learning is a novel method that enables deep neural
network models to converge faster so that the model can

quickly learn a new task with much less labelled data [14].
Transfer learning applies the knowledge gained in a source
domain to other different but related target domains. Recently,
researchers have investigated the transferability of convolu-
tional layers in DNNs and demonstrated that fine-tuning these
hidden layers trained on large-scale datasets from the source
domain can be utilized to learn the features of target domain
with much less labelled data [15]–[19].

III. METHODOLOGY

Recent DL based cross-device attacks require a large
amount of traces for training the DL model, which makes it
difficult to recover secret keys from target devices, especially
in real-world scenarios. To enhance existing method, we
propose to apply the meta-transfer learning methodology to
reveal the crucial information from the profiling device and
transfer them to better recover the secret keys of the target
devices. To the best of our knowledge, such a method has not
been explored in side channel attacks. This novel method is
named as Meta-transfer Learning based Side Channel Attacks
(MTL-SCA). The overall scheme of the proposed MTL-SCA
is shown in Figure 1 and the working process is presented in
Algorithm 1.

The developed MTL-SCA mainly involves two stages, DNN
model pre-training and meta-transfer learning. In the pre-
training stage, we obtain a good initial parameters of the
DNN model. Then in the meta-transfer learning stage, we
will fine-tune the pre-trained model on the target dataset.
Finally, we apply the trained model to recover the secret keys
from the target device. Since the proposed attack exploits the
advantages of both meta learning and transfer learning, our
attack can break the target AES-128 device with fewer traces
and lower training costs simultaneously when compared to
previous works.

A. DNN Pre-training

This stage is similar to the classic DNN training phase.
That is, we randomly sample an input/output pairs from the
source task Ti and initialize the parameters θ (e.g., weights) in
DNNs classifier fθ. During the pre-training stage, the model
parameters θ are optimized by minimizing the cross-entropy
loss LTi on the dataset Di.

LDi

Ti (fθ) =
∑

x(j),y(j)∼Ti

l (fθ(x), y) (1)



In the proposed attack, we use physical side channel
leakages including power and EM traces collected from the
profiling device to pre-train the DNNs model. The resulting
pre-trained parameters will serve as good initialization of the
DNNs model and can help us solve the instability problem
caused by the meta-learning as mentioned in [11], [14].

B. Meta-transfer Learning based SCA

Our meta-transfer learning method uses the information
captured from multiple source tasks to train the target task
and optimize the model’s parameters effectively. Formally, we
consider a classifier f(θ) with corresponding parameters θ. For
each adaptation step on task Ti, we optimize the parameters
in our DNN model using a gradient based learning algorithm
as follows:

θ′Ti ← θ − α∇θLTi(θ) (2)

where α is the task-level learning rate. In our method, we
automatically update the parameter α using the meta-learning
algorithm.

The DNN model is optimized by achieving the minimal
error over the dataset from target devices. The meta-objective
is defined as follows:

argmin
θ

∑
Ti∼p(T )

LTi
(
θ′Ti
)
=

∑
Ti∼p(T )

LTi (θ − α∇LTi(θ))

(3)
where p(T is the task distributions.

Here we perform the meta-transfer learning which enables
to transfer knowledge from source tasks to a specific target
task. Note that the parameter θ can be updated using stochastic
gradient descent (SGD) as follows:

θ ← θ − β∇θ
∑

Ti∼p(T )

LT (θ′Ti) (4)

C. Evaluation Metric

We use the guessing entropy over the test set to evaluate the
performance of our MTL-SCA mechanism [5], [20]. Given a
random input vector T = [t1, t2, ..., ta] in the attack phase,
the size of the key space |K|, the estimated probability p̂ij for
key candidates, a key guessing output can be described by the
vector g = [g1, g2, ..., g|K|], where gi is given by using the
following log-likelihood function:

gi =

a∑
j=1

log (p̂ij) (5)

The guessing entropy in SCA can be finally computed by the
average position of the secret key k∗ over the test set.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We conduct experiments on AES software implementations
on different microprocessors. Table I lists all experimental
devices used to validate the proposed attack method. In total,
we collect power and EM traces on 5 different microproces-
sors running the same AES encryption algorithm. We utilize

Algorithm 1 MTL-SCA: for distribution p(T ) over tasks
T = {T1, T2, ..., Ti}, the DNNs classifier f with parameter
θ, learning rate α and β

Input: T = {T1, T2, ..., Ti}, α and β
Output: Model parameters θM

1: //DNNs model pre-training on the source task
2: Randomly initialize parameter θ
3: Generate subset Dt from the labeled dataset D
4: for all Di do
5: Sample Di = (traces, labels) batch from dataset Dt

6: Update parameter θ in Eq. (1) using SGD
7: end for
8: // Meta-trasfer learning on the target task
9: while not done do

10: Sample task batch Ti ∼ p(T )
11: for all batch p(T ) do
12: Evaluate loss ∇θLTi(θ) on sampled tasks
13: Optimize parameter θ′Ti ← θ − α∇θLTi(θ)
14: end for
15: Update parameter θ ← θ − β∇θ

∑
Ti∼p(T ) LT

(
θ′Ti
)

16: end while

Chipwhisperer UFO target board [21] as the side channel trace
acquisition platform.

This acquisition platform runs at fixed clock frequency of
7.37MHz for all our microprocessors under test. We customize
the TinyAESC [22], an open-source portable version AES en-
cryption/decryption library designed for microprocessor with
reduced RAM and ROM usage. It is worth noting that the
compilers may eventually generate divergent assembly code
due to the architecture variation. To eliminate the influence of
compilers, we inspect the binary code with reverse engineering
tool and examine if the encryption procedures follow similar
control flow and data flow. Further, we limit the acquisition
window on specified instructions during AES encryption and a
fixed key is used for our experiments. With this experimental
setup, we can focus on the hardware and architecture differ-
ences while performing MTL-SCA attacks.

All data analyses are conducted on a server of Intel Xeon(R)
E5-2623 v4 2.60GHz CPU, 128GB RAM, Ubuntu 18.04,
accelerated by NVIDIA Tesla V100 GPU. The neural network
architecture of the MTL-SCA consists of two convolution
layers and four fully-connected layers. We use ReLU as the
activation function for input and hidden layers. The DNN
model is trained for 50 epochs with a batch size of 50.

B. Power and EM Trace Collection

To align all acquired traces, a trigger signal is set on a
dedicated GPIO port of the target board at the beginning of
each AES encryption. The trigger signal remains high during
the entire AES encryption and will be pulled down once
the encryption is finished. Among the entire AES encryption
procedure, we only set the acquisition window into the first
byte substitution layer of AES encryption. More specifically,
the sbox(k[0]⊕p[0]) operation occurs at fixed location on same



Dataset Abbr. Platform Chip Model ISA #Features (POIs) #Traces

STM32F0 32-Bit Microprocessor STM32F071RBT6 ARM Cotex-M0 700 60000
STM32F1 32-Bit Microprocessor STM32F100RBT6 ARM Cortex-M3 700 100000
STM32F3 32-Bit Microprocessor STM32F303RCT7 ARM Cortex-M4 700 100000
STM32F4 32-Bit Microprocessor STM32F405RGT6 ARM Cortex-M4 700 50000

ATXMEGA 8-Bit Microcontroller ATXMEGA128D4 AVRxm 700 50000

Table I: Profiling side channel leakage dataset (power and EM)

(a) Power (b) EM

Figure 2: Evaluation of device variations for ST and AVR
microprocessors using different side-channel sources.

type of microprocessors as we apply the same clock frequency
and same source code. We utilize binary analysis technique to
calculate when the sbox operation happens and use this time
value as the acquisition offset along with the trigger signal.
Therefore, we can narrow down our acquisition window and
only record power and EM traces related to the operation
sbox(k[0] ⊕ p[0]) to achieve the maximum sampling rate1.
During our experiment, Keysight MSOX4154A is used as the
testing equipment with a maximum sampling rate of 2.5GSa/s.
We utilize Keysight N2894A probe and Langer LF-3 probe
to capture the power consumption and EM emanations from
the microprocessors running AES encryption, respectively. For
each acquisition, 700 data points, also called features or point
of interests (POIs), of each power/EM trace are collected.

We evaluate the device variation based on these captured
side channel traces through Pearson product-moment correla-
tion coefficient (PPMCC). In our experiments, 10,000 traces
for each device are collected and are used to compute the
correlation coefficient. The experimental results of similarity
among different types of cross devices are shown in Figure
2. Based on the quantitative analysis results, we observe that:
(i) The PPMCC for the device from the same manufacturer
(e.g., STM32Fx) are relatively large, illustrating that an ad-
versary can easily recover secret keys using profiling attacks
across different devices (see Figure 2 (a)). (ii) The PPMCC
between devices of different architectures, e.g., STM32Fx
and ATXMEGA, are much smaller, indicating that it will be
challenging for an adversary to apply profiling attacks in this
scenario. The similar tend can also be found in Figure 2 (b).

1The setting of the short acquisition window is to overcome the storage
limits of commercial oscilloscopes at high sample rates.

Method Pre-train Fine-tune Pre-processing Model

DL-SCA [3] 3 7 7 DNN
FL-SCA [8] 3 7 FFT DNN

TL-SCA [10] 3 3 (TL) 7 DNN
MTL-SCA 3 3 (MTL) 7 DNN

Table II: Comparison to related work. TL - Transfer Learning,
MTL - Meta-Transfer Learning, FFT - Fast Fourier Transform.

C. Case Study 1: Cross-Device Power MTL-SCA

To evaluate the effectiveness of the proposed attack on
the collected power traces (see Table I), we compare the
attack efficacy of MTL-SCA with existing DL based attacks,
including DL-SCA [3], FL-SCA [8] and TL-SCA [10]. A brief
comparison between our attack and these previous attacks is
shown in Table II. As we can see from the table, all four
methods leverage DNN and require pre-training stages. Only
TL-SCA and MTL-SCA has the fine-tune capability. As we
will see soon, the MTL based fine-tuning outperforms the TL
based fine-tuning.

In our experiments, we keep the DNN model architectures
fixed, which means only one unified model is trained on
the collected traces from the profiling devices. This model
is then used to exploit all target devices. During the training
stage, we randomly select 20,000 traces from the collected
profiling device dataset for pre-training and 800 traces from
the target device for fine-tuning using the MTL method. In
the evaluation stage, we capture 10,000 traces from the target
device to evaluate the effectiveness of different DL based SCA
methods. Figure 3 shows the experimental results in recovering
the first byte of the AES-128 key. We observe that: (i) For
cross-device attacks with the same architecture, MTL-SCA
can recover the secret key from the target devices using as
less as 3 traces, a much better result compared to DL-SCA,
FL-SCA and TL-SCA attacks. (ii) For cross-device attacks
with different architectures, the DNN models fine-tuned by
the MTL method can converge towards guessing entropy 0
within 40 traces, much better than previous attacks.

Further, we also observed that the proposed MTL-SCA re-
quires much less side channel traces from the profiling device
for pre-training (by 35% on average). These experimental
results further demonstrate that by leveraging the advantages
of both transfer learning and meta learning, our attack can
converge faster while reducing the probability of overfitting.

D. Case Study 2: Cross-Device EM MTL-SCA

In this section, we consider another scenario in which an
adversary may only collect EM traces from the target device.



(a) DL-SCA (b) FL-SCA (c) TL-SCA (d) MTL-SCA

Figure 3: Comparisons of different cross-device side channel attacks.

(a) STM32F0 (b) STM32F1 (c) STM32F3

(d) STM32F4 (e) ATXMEGA (f) ASCAD

Figure 4: Experimental results of MTL-SCA on cross-device cross-domain attacks among different devices.

Our goal is to evaluate the effectiveness of MTL-SCA on EM
traces which often have lower signal-to-noise ration. In our
experiments, the DNN model is trained on the EM profiling
dataset with 50,000 EM traces. Another 10,000 EM traces are
collected from the target device as the testing dataset.

Similar to power side channel attacks, we implement cross-
device EM side-channel attacks. Our initial experiment uses
20,000 EM traces but the DNN model cannot converge towards
guessing entropy 0. By increasing the training dataset to
50,000 traces, the DNN model can recover the secret key
if fine-tuned by 1,000 EM traces from the target device of
the same architecture. If the target device is of different
architectures, we need 1,500 EM traces to fine-tune the model.
The experimentation results demonstrate that the additional
noise on EM signals will influence the key guess accuracy but
our method can still recover the key with much less traces.

E. Case Study 3: Cross-Device Cross-Domain MTL-SCA

To further improve the feasibility of the proposed attack, we
consider a stronger threat model here. That is, the attackers
may only collect noisy EM traces from the target devices
but they can build a DNN model with power traces from a
profiling device. We name the new attack as cross-device and
cross-domain side-channel attack. Specifically, an adversary
can pre-train the model on the power traces from the profiling
device and then utilize the meta-transfer learning to fine-tune
the model on noisy EM traces from the target device. For each
target device, we try 5 different profiling devices to train the
DNN model. We use 50,000 power traces for pre-training and
20,000 EM traces for fine-tuning the DNN model.

The experimental results are shown in Figure 4. We observe
that: (1) For the collected datasets (see Figure 4 (a), (b), (c), (d)
and (e)), our cross-device cross-domain attack can successfully
recover the secret key of the target device within less than



200 EM traces (in many cases, less than 50 EM traces are
needed). Take the STM32F1 device as an example, our DNNs
model can break the AES key using only as few as 8 EM
traces. Again, even with low signal-noise-ratio (SNR), our
method can still break the AES key within a few hundred
EM traces. (2) We also train our DNN model on a public
masked ASCAD dataset [23] (see Figure 4 (f)) for the cross-
device cross-domain attacks. Our results show that we need
less than 230 EM traces to perform the side channel attacks.
These experimental results further show that it is possible
to implement the cross-device and cross-domain MTL-SCA.
An adversary can use the proposed MTL-SCA framework to
recover the secret keys even using noisy side-channel signals
(i.e., low SNR EM traces) from target device but still achieving
high attack capability.

V. CONCLUSIONS

DL based profiling side-channel attack have posed a great
threat to embedded devices. An attacker can capture physical
side channel leakages from a profiling device and generate the
dataset for a DL model. In this paper, we present an even more
powerful attack that uses meta-transfer learning to transfer
DL networks between target devices by judiciously extracting
information from a profiling device even using different side-
channel sources. A new cross-device cross-domain attack was
presented. Compared to previous attack methodologies, our
method significantly reduces the training cost and the amount
of traces from target devices for the efficient SCA attacks.
In the future, we will focus on effective defense mechanisms
against DL based SCA, and therefore enhance the robustness
of cryptographic circuits.
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Koç, and C. Paar, Eds. Springer Berlin Heidelberg, 2003, pp. 13–28.

[2] C. Archambeau, E. Peeters, F. X. Standaert, and J. J. Quisquater,
“Template attacks in principal subspaces,” in Proceedings of the 8th
International Conference on Cryptographic Hardware and Embedded
Systems, ser. CHES’06. Springer-Verlag, 2006, p. 1–14.

[3] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic
implementations using deep learning techniques,” in Security, Privacy,
and Applied Cryptography Engineering, C. Carlet, M. A. Hasan, and
V. Saraswat, Eds. Cham: Springer International Publishing, 2016, pp.
3–26.

[4] S. Picek, A. Heuser, A. Jovic, S. Bhasin, and F. Regazzoni, “The curse of
class imbalance and conflicting metrics with machine learning for side-
channel evaluations,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2019, 2018.

[5] J. Kim, S. Picek, A. Heuser, S. Bhasin, and A. Hanjalic, “Make some
noise. unleashing the power of convolutional neural networks for profiled
side-channel analysis,” IACR Transactions on Cryptographic Hardware
and Embedded Systems, vol. 2019, no. 3, pp. 148–179, 2019.

[6] D. Das, A. Golder, J. Danial, S. Ghosh, A. Raychowdhury, and S. Sen,
“X-deepsca: Cross-device deep learning side channel attack*,” in 2019
56th ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1–6.

[7] S. Bhasin, A. Chattopadhyay, A. Heuser, D. Jap, S. Picek, and R. R. Shri-
vastwa, “Mind the portability: A warriors guide through realistic profiled
side-channel analysis,” Cryptology ePrint Archive, Report 2019/661,
2019, https://eprint.iacr.org/2019/661.

[8] F. Zhang, B. Shao, G. Xu, B. Yang, Z. Yang, Z. Qin, and K. Ren, “From
homogeneous to heterogeneous: Leveraging deep learning based power
analysis across devices,” in 2020 57th ACM/IEEE Design Automation
Conference (DAC), 2020, pp. 1–6.

[9] D. Thapar, M. Alam, and D. Mukhopadhyay, “Transca: Cross-family
profiled side-channel attacks using transfer learning on deep neural
networks,” Cryptology ePrint Archive, Report 2020/1258, 2020, https:
//eprint.iacr.org/2020/1258.

[10] C. Genevey-Metat, B. Gérard, and A. Heuser, “On what to learn: Train
or adapt a deeply learned profile?” Cryptology ePrint Archive, Report
2020/952, 2020, https://eprint.iacr.org/2020/952.

[11] J. W. Soh, S. Cho, and N. I. Cho, “Meta-transfer learning for zero-
shot super-resolution,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

[12] G. I. Winata, S. Cahyawijaya, Z. Lin, Z. Liu, P. Xu, and P. Fung,
“Meta-transfer learning for code-switched speech recognition,” in
Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Online: Association for Computational
Linguistics, Jul. 2020, pp. 3770–3776. [Online]. Available: https:
//www.aclweb.org/anthology/2020.acl-main.348

[13] Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele, “Meta-transfer learning
for few-shot learning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[14] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” ser. Proceedings of Machine Learning
Research, D. Precup and Y. W. Teh, Eds., vol. 70. International
Convention Centre, Sydney, Australia: PMLR, 2017, pp. 1126–1135.

[15] H. Azizpour, A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson,
“From generic to specific deep representations for visual recognition,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshop, 2015, pp. 36–45.

[16] W. Ge and Y. Yu, “Borrowing treasures from the wealthy: Deep transfer
learning through selective joint fine-tuning,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[17] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Simultaneous deep
transfer across domains and tasks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2015, pp. 4068–4076.

[18] Y. Cui, Y. Song, C. Sun, A. Howard, and S. Belongie, “Large scale
fine-grained categorization and domain-specific transfer learning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

[19] S. Ahn, S. X. Hu, A. Damianou, N. D. Lawrence, and Z. Dai, “Varia-
tional information distillation for knowledge transfer,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019.

[20] F.-X. Standaert, T. G. Malkin, and M. Yung, “A unified framework
for the analysis of side-channel key recovery attacks,” in Advances in
Cryptology - EUROCRYPT 2009, A. Joux, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 443–461.

[21] NewAE Technology Inc., “Cw308 ufo target board,” https://www.newae.
com/products-1/NAE-CW308, 2020.

[22] kokke, “tiny-aes-c,” https://github.com/kokke/tiny-AES-c,, 2017.
[23] E. Prouff, R. Strullu, R. Benadjila, E. Cagli, and C. Dumas, “Study

of deep learning techniques for side-channel analysis and introduction
to ascad database,” Cryptology ePrint Archive, Report 2018/053, 2018,
https://eprint.iacr.org/2018/053.

https://eprint.iacr.org/2019/661
https://eprint.iacr.org/2020/1258
https://eprint.iacr.org/2020/1258
https://eprint.iacr.org/2020/952
https://www.aclweb.org/anthology/2020.acl-main.348
https://www.aclweb.org/anthology/2020.acl-main.348
https://www.newae.com/products-1/NAE-CW308
https://www.newae.com/products-1/NAE-CW308
https://github.com/kokke/tiny-AES-c
https://eprint.iacr.org/2018/053

	Introduction
	Preliminaries
	Deep Neural Network
	Profiled Side-channel Attack
	Meta-transfer Learning

	Methodology
	DNN Pre-training
	Meta-transfer Learning based SCA
	Evaluation Metric

	Experimental Results
	Experimental Setup
	Power and EM Trace Collection
	Case Study 1: Cross-Device Power MTL-SCA
	Case Study 2: Cross-Device EM MTL-SCA
	Case Study 3: Cross-Device Cross-Domain MTL-SCA

	Conclusions
	References

