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Abstract—The combination of deep learning techniques and
commercial 3D sensors reveal a bright future as they provide a
low cost and convenient method to collect and analyze depth in-
formation from the environment for various applications ranging
from industrial modeling to mobile face recognition. Despite the
abundant research devoted to the development of more accurate,
flexible and efficient machine learning schemes as well as 3D
sensors, security concerns related to these techniques remain
largely untouched. In this paper, we propose a novel adversarial
attack against this combination by showing that deep learning
models with popular 3D sensors may misclassify real objects
in the physical environment. Comparing to the existing attack
algorithms against deep learning models developed for 3D data
analysis that only consider digital point cloud data and single
deep learning model, our attacks target popular commercial 3D
sensors combined with various deep learning schemes in the
black-box setting. Experimental results demonstrate that our 3D
printed adversarial objects stay effective after scanned by a 3D
sensor.

I. INTRODUCTION

With the popularization of various 3D sensors including
Lidar, scanner and depth camera, the cost to collect depth
information from the environment reduces dramatically. The
demand to process the massive 3D data collected by these
sensors calls for an efficient and accurate method, where deep
learning techniques come in. As many deep learning models
are proposed to process 3D data such as [1]–[5], it is popular
to apply deep learning models for analyzing the 3D data for
classification, detection, and recognition. For instance, depth
information from human faces captured by the structured-
light-based depth camera set on smartphones can be utilized
by the deep learning models within these smartphones for
accurate face recognition.

Though the combination of deep learning and 3D sensors
is viewed as a promising way in many applications, the
security concerns toward them are also raised, yet the efforts
invested in the related security problems are quite limited. The
vulnerability of deep learning models in image processing and
voice recognition are already revealed in [6], [7], as well as
in domains beyond image and voice [8], [9], showing that ad-
versarial examples generated by adding small but intentionally
selected perturbations to the original inputs can (mis-)lead the
target models to specific incorrect outputs. This type of attack
is also verified in physical world through specific devices.
As shown in [10], [11], adversaries can achieve their purpose
against deep learning models behind the devices by printing

images captured by camera or broadcasting songs targeting
smart home devices.

Recent works [12] start to consider adversarial examples
in 3D data, i.e., point cloud. Algorithms in [12], [13] target
the PointNet series model [2], [3] by adding or altering the
point cloud served as the inputs to the model. However, the
ignoring of realistic scenarios with specific types of 3D sensors
weakens the feasibility of these attacks. We do observe that in
the autonomous driving area, many works start to consider
attack schemes against the combinations of deep learning
models and Lidar sensors [14]. However, similar works are
rarely discussed in applications related to other 3D sensors
such as 3D cameras and scanners. The work in [15] considers
the attack on PointNet model and 3D sensors simultaneously.
However, the white-box setting gives the work less flexibility
and thus not suitable for commercial devices and real world
scenarios. We also notice that new algorithms of 3D data
classification algorithms [4], [5] emerge after PointNet series
models [2], [3], yet attack methods are less discussed on those
models.

To better understanding the security issues related to the
combination of 3D sensors and deep learning models, we
focus on adversarial attacks in black-box scenario against
this popular combination. A novel attack method is proposed
to generate robust adversarial 3D objects that preserve their
properties after physically manufactured by 3D printers. The
attack is verified in popular 3D data classification models
available for testing.

To summarize, we make the following contributions in this
paper:
• We propose a novel attack approach to generate 3D ad-

versarial objects against structured-light-based 3D sensors
with popular deep learning-based 3D data classification
models;

• In our experiments, we show that our attack stay effective
against various types of deep learning structures designed
for analyzing point cloud data;

• We demonstrate that our attack can be launched without
knowing the internal information of the target models
during the attack and can be generalized to multiple types
of deep learning models in 3D classification domain.

The remainder of this paper is organized as follows: Section
II describes related work. Our proposed method is introduced
in Section III. Experiments are performed in Section IV, and
Section V concludes this paper.978-1-6654-3274-0/21/$31.00 ©2021 IEEE



II. RELATED WORK

A. Commercial 3D Vision System

Popular 3D vision system can be generally divided into two
categories: passive imaging and active imaging.
Passive imaging. Stereo imaging system is a popular passive
3D capturing solution. It involves two separate cameras which
take images of a scene from two different viewpoints. The
disparity derived from the two paired images help compute the
relative depth of points in the scene, where 3D information
can be generated. Though passive imaging methods can be
implemented easily, they are limited by the accuracy and the
capability of capturing small and mobile objects.
Active imaging. Structured light is a popular active imaging
method. It employs structured laser light or two-dimensional
laser grid projection. The projected coherent laser beams hit
the surface of the object, generate patterns that can be cap-
tured by the camera. With the calibration information which
contains the geometry of the camera and laser combination, the
coordinates of the intersection point between the surface and
the laser beam can be calculated by triangulation. Popular 3D
scanners normally require calibration and placing the scanned
objects in a static base to acquire high-accuracy point cloud
data from the object surface. This type of 3D scanners are
widely applied in real-world applications such as designing
and manufacturing.

ToF (Time of flight) camera is another type of 3D sensors.
It continuously sends light pulses to the target, and then using
the sensor to receive the light returned from the object, the
distance of the target is obtained by detecting the flight (round
trip) time of these light pulses. ToF cameras have advantages
such as fast processing speed, comparatively longer range
and compact design. Since it is a relatively new technique,
solutions based on ToF are not mature yet. Due to these
constraints, the more mature structured light based 3D scanner
will be chosen as the targeted sensors in our work.

B. Deep Learning on 3D Data

As 3D sensors get popular, the demand to process 3D data
collected in an efficient and accurate way rises. Point cloud
data, as a popular data format that contains 3D coordinates
information of points sampled from the surface of physical
or virtual objects, are widely applied in many areas includ-
ing industrial modeling, surveying, and autonomous driving.
Though deep learning models are used to process point cloud
data, the different characteristics between point cloud data and
common image data make it difficult to directly apply existing
deep learning techniques. Various methods are developed to
transform the point cloud data into 3D grids or features that
can be analyzed by existing deep learning models [1], but
the information loss during the transformation limits their
performance. PointNet and PointNet++ [2], [3] are developed
to address this limitation by directly processing the raw point
cloud data in the deep learning models and enabling end-to-
end neural network learning. PointNet is robust against miss-
ing points and random perturbations. The high performance of

PointNet leads to its wide adoption in different applications as
backbone feature generation networks. Since then, more deep
learning schemes [4], [5] are proposed to directly analyze the
point cloud data.

C. Adversarial Attacks in Deep Learning

The phenomenon of adversarial examples was first found
by Szegedy [6], who observed that adding slight but intention-
ally generated perturbations to legal inputs can mislead deep
learning models into making incorrect decisions in 2D image
classification. The problem to generate adversarial examples
is often generalized as an optimization process to find a
perturbation δ on the original input x so that the target deep
learning model can give the specified output. Since then, more
algorithms [16]–[18] have been proposed to launch increas-
ingly efficient and effective adversarial attacks in different
domains. These algorithms are all white-box attacks. They rely
on the transferability [19] to stay effective when the internal
information of the target model is not accessible. Black-box
adversarial attacks such as Zeroth Order Optimization (ZOO)
[20] do not rely on transferability, but rather depends on the
output of the target models, and performing optimization with
gradient estimates obtained via finite differences. Generative
adversarial networks (GAN) and genetic algorithm [21] are
also applied in generating adversarial examples in black-box
settings. However, how to generate reasonable adversarial
meshes against deep learning models in the 3D analyzing
domain remains an open question.

III. PROPOSED METHODOLOGY

A. Threat Model

Our work assumes an adversary who intends to attack the
combination of deep learning models and structured-light-
based 3D cameras by manufacturing certain objects in the
physical world. We select popular models designed for point
cloud classification as the target, including PointNet++ [3],
PointConv [5], and PCNN [4]. The printed adversarial objects
will be scanned by the 3D sensors and the point cloud
generated from the corresponding depth map will be verified
whether the model can be attacked physically. The attack will
be launched in the black-box model due to the following
concerns: the gradients required for white-box attacks are in-
accessible within the sensors; in realistic scenarios, adversary
may find it hard to acquire the internal information in the
models.

B. Genetic Adversarial Attack in 3D Sensing

Genetic algorithm. The proposed black-box attack relies on
genetic algorithms, which are population-based gradient-free
optimization strategies. Our work is inspired by [21], which
first integrates genetic algorithms into black-box adversarial
attacks against deep learning models. Genetic algorithm is
a general approach that requires to define gene, population,
fitness function, mutation and crossover to simulate the evolv-
ing process in the nature selection. The population of inputs
generated from the genes are evolved through mutation and



crossover to maximize the fitness score, which evaluate the
performance of each candidates regarding the goal of evolving.
At every iteration, the candidate with the highest fitness score
is preserved while the rest are replaced. New candidates are
generated by mutating and crossover a pair of old candidates.
In our attack algorithms, we define a single gene as a mesh
consists of vertices and faces and the population is a set
of genes. The gene could be either retrieved from existing
datasets (e.g., ModelNet40), or generated from the variants of
unit icosphere by adding small Gaussian noise. The population
will be scored by the fitness function at the beginning of
each iteration and retain the superior portion of genes in
the population. Afterward, the mutation function is performed
on parents by pre-defined mutation chance except the best
gene. The crossover step will then take place to restore the
population size by randomly combined genes in parents to
generate new gene, as known as child, and add it into the
population.
Fitness function. The fitness objective follows the algorithm
proposed by Carlini and Wagner [18], including the following
objectives: A C&W-like attack objective regarding the classi-
fication results which motivate the population to be classified
as certain object type by the target deep learning models.

The gene, which is the vertices of a mesh, can be repre-
sented as x ∈ Rn×3. The perturbation added to vertices during
the mutation is represented as δ ∈ Rn×3. The classification
objective f(x) is formulated as follows:

f(x+ δ) = max
i 6=y′
{Z(x+ δ)i} − Z(x+ δ)y′ (1)

where y′ is the target class, Z(·) denotes the output tensor of
the model, which is the logit score before the softmax function
in the last layer. To limit the distances (dis-similarity) between
the perturbed examples and the original one, we use Chamfer
distance to find the point p in the mesh x and its closest
point p′ in corresponding x′ to measure the average distance
of points, which is introduced as DC(x

′, x) in Equation 2:

DC(x
′, x) =

1

‖x′‖
∑
p′∈x′

(
min
p∈x
‖p′ − p‖22

)
(2)

In contrast to other types of data, e.g., images, the values
of vertex coordinate in meshes are unbounded, causing that
mutations of vertices may alter the candidate mesh into an
unstable and twisted form. To avoid the cases that meshes are
evolved into shapeless, we introduce composite distance metric
lcom, which help the mesh to stay in a reasonable shape. The
proposed composite distance metric consists of three terms,
Laplacian loss llap, edge loss ledge and normal loss lnor of
the evolving meshes [22]. The classification objective term
lcw is defined in Equation 1.

The overall fitness function f is shown below.

f(x+ δ) = −(lcw + c ·DC(x+ δ, x) + lcom) (3)

lcom = ω1 · llap + ω2 · ledge + ω3 · lnor (4)

where ω1, ω2, and ω3 are coefficients. We set ω1 = 0.1, ω2 =
1 and ω3 = 0.01. The hyper-parameter c is the weight for the

applied distance matrices to limited the deformation of the
mesh. The number of iteration is set to 4000 unless early stop
criteria are reached.
Mutation. For each iteration of the genetic attack, we retain
the top n genes of the population with the highest fitness
scores. Those genes with lower scores which are not in top
n is called leftover and will be retained with probability p1.
Afterward, those genes except the best one will be mutated
with probability p2 by the following mutation function.

f(x) = x+M ⊗ (N (0, 1) · α) (5)

where x ∈ Rn×3 is the coordinate of the mesh vertices and
M is a mask matrix. The mask matrix can be consider as
a selection of vertex that should be perturbed by adding a
Gaussian distribution with a scalar α. The ⊗ denotes the
element-wised multiplication, which applies the mask M on
the perturbation. The α is a user-defined coefficient which
limits the perturbed value to prevent the mesh from excessive
distortion.
Crossover. After the mutation step, we need to restore the
population size by randomly crossover the existing genes in
the population. In this step, two genes will be randomly picked,
which are called parents, from the population and combined
using a mask to obtain half of the gene from both parents to
form a new gene, known as a child. This process will continue
until the population size is restored. The crossover function is
defined as follows.

f(x1, x2) =M ⊗ x1 +M ⊗ x2 (6)

where x1 and x2 are the parent genes. The mask M is used
for selecting vertices from parent genes. The overall attack
process is depicted in Algorithm 1.
Attack types. Two types of attacks are considered in our
work, Reshaping Attack and Altering Attack. In the Reshaping
Attack, we will reshape a standard sphere so that it can be
classified as any target class by the target deep learning model.
In the Altering Attack we will try to slightly alter the existing
mesh belong to certain category, e.g., “bottle”, so that it can
be classified as certain class, e.g., “vase”.

IV. EXPERIMENTS

A. Experimental Setup

The ModelNet40 dataset [23] is used in our experiments,
including training, testing the victim models, and generating
adversarial examples. This dataset contains 12,311 CAD mod-
els with 40 common object categories in real world. We use
the default splits, where 9,843 examples are used for training,
and the remaining 2,468 examples are used for testing. For
adversarial attacks, we randomly choose a subset of data in
both training and testing set as the “clean” meshes.

PointNet++ [3], PointConv [5], and PCNN [4] are cho-
sen as our target models. The models are trained using the
ModelNet40 dataset with network architectures and hyper-
parameters used in original papers. In our experiments, these



Algorithm 1: Genetic attack algorithm

1 Input: mesh m, fitness function Fit(·), mutation
function Mutate(·), crossover function Cross(·),
max-iteration T , probability for selecting leftover p1,
probability for mutation p2, population size P ;

2 Output: Adversarial mesh madv;
3 initialization;
4 Gene ← vertices and faces of mesh;
5 Population ← {Genei}Pi=1;
6 for i← 1 to T do
7 Fit(Population);
8 parents ← best n genes;
9 leftovers ← genes 6∈ parents;

10 foreach gene 6∈ leftovers do
11 parents.insert(gene) with probability p1;
12 end
13 foreach gene ∈ parents and gene 6∈ best gene do
14 Mutate(gene) with probability p2;
15 end
16 while size of parents < population size do
17 child ← Cross(random genes in parents);
18 parents.insert(child)
19 end
20 if early stop or successfully generated madv then
21 return madv ← best gene
22 end
23 end

classification models are trained without considering normal
vectors to classify 40 categories.

In our work, Reshaping Attack starts from a sphere to an
arbitrary class and the most-likely Altering Attack aiming to
misclassifying the ModelNet40 mesh. We pick a subset from
the ModelNet40 including bottle, bed, door, cone, lamp, and
vase. For each class, we choose 15 objects and perform the
proposed genetic attack. Specifically, we sample the point from
the mesh surface by PyTorch3D [22] to obtain the point cloud
for the fitness function in each iteration. We then use 3D
printers and 3D scanners to show that our method can be
implemented in the real world.

All experiments were carried out on a server with an Intel
E5-2623 v4 2.60GHz CPU with 16GB RAM, Ubuntu 18.04,
accelerated by NVIDIA CUDA Framework 10.0 and cuDNN
7.0 with four NVIDIA GeForce RTX 2080Ti GPUs. The
adversarial objects are printed by Creality CR-10 Max 3D
Printer. The printed 3D objects are then scanned as meshes by
EinScan-SE 3D scanner. The re-scanned meshes will be served
as the inputs to the target models to test the effectiveness of
the physical adversarial examples.

B. Most-likely Altering Attack on ModelNet40 Mesh

We select a subset of the ModelNet40 and apply our
proposed attack method. The class with the second-highest
prediction value is selected as our target class to perform the

TABLE I
ATTACK SUCCESS RATE (%) OF EACH CLASS IN ALTERING ATTACK.

Model
class bottle cone lamp bed door vase

PointNet++ 93.33 60 60 73.33 100 73.33
PointConv 93.33 66.67 73.33 60 86.67 60

PCNN 93.33 66.67 80 66.67 86.67 60

most-likely attack. Since the shape and the structure can vary
from different classes, in order to make the attack successful,
larger distortion and more iterations are needed. Thus, we
choose the most-likely class to generate a more regular adver-
sarial example. The visualized results and the attack success
rate are shown in Figure 1 and Table I, respectively. Depending
on the class, the success rate is between 60%− 100%. From
Table I, we can observe that “bottle” and “door” achieve
higher success rate than the others. This is due to the required
distortion for those classes to transform into another relatively
close classes is less than others. For instance, door and curtain
are similar in shape and thus more likely to attack successfully.
This result indicated that our proposed method can be even
more effective on those models trained for classifying specific
types of data. From Figure 1 we can observe that the generated
adversarial objects stay reasonable shape so that they can
be physically manufactured/printed. Note that existing works
such as [12], [13] generate adversarial point cloud data by
adding unattached point cluster without forming watertight
mesh. The attack presented in [15] forms adversarial meshes
as well, yet their methods rely on the surface reconstruction
algorithm provided by third-party software, which may cause
unintentional detail loss.

C. Reshaping Attack from Standard Sphere

The Reshaping Attack is launched through reshaping the
standard sphere. Hence, it can be classified as any target class
in the ModelNet40 dataset while maintaining a reasonable
shape to be realized physically. The success rates of the
Reshaping Attack regarding different types of target models
are shown in Table II. It shows the number of classes suc-
cessfully attacked, the total number of classes in ModelNet40,
and the mis-classification rate. The reshaping attack achieve
success rate between 87.5% − 92.5%. The higher success
rate comparing to Altering Attack can be attribute to the less
limitation of Chamfer distance.

The visualization of the original standard sphere, some
adversarial objects as well as the target model and classes
are shown in Figure 2. We can observe that through our
attack a standard sphere mesh can be reshaped into watertight
mesh according to the purpose of the adversary against various
types of deep learning models with high success rates. As we
will show later, point cloud data of these adversarial objects
captured by 3D scanners may lead the deep learning models
to arbitrary classification results controlled by the adversary.



Fig. 1. Visualization of the 3D adversarial objects generated by our attack
algorithm of each target class and model.

Fig. 2. Examples of the 3D reshaped sphere and the corresponding classifi-
cation results regarding different target models.

D. Evaluation of 3D Printed Adversarial Objects

The adversarial meshes generated by the proposed methods
are physically manufactured by 3D printers, and then be re-
scanned by a 3D scanner. The captured point cloud are then
used as inputs for the target models to verify the effectiveness
of our attacks. In total, we print 10 objects with 5 reshaped
objects and 5 altered objects. Among them, 9 of them receive
desired classification results, showing that our methods are
effective in the real-world scenario. Some examples of the
printed adversarial objects with the attack type, target model

Fig. 3. Physical printed adversarial objects with their target models and attack
goals.

TABLE II
MIS-CLASSIFICATION RATE OF OUR RESHAPING ATTACK USING

STANDARD SPHERE.

Object Models Mis-classification Rate
sphere PointNet++ 36/40 (90.00%)
sphere PointConv 35/40 (87.5%)
sphere PCNN 37/40 (92.5%)

and attack goal are shown in Figure 3. The scanning environ-
ment including the Einscan-SE scanner with the data collecting
laptop is set as shown in Figure 4.

E. Comparison with Existing Works

The comparison of our work with existing works are shown
in Table III and Table IV. In Table III the different settings
of our attack and existing works are illustrated. Comparing to
previous attacks, our method is designed for a more practical
setting. All previous works are designed for white-box attacks
against single type of deep learning models while our attacks
can be launched in the black-box setting against multiple
types of deep learning schemes. From Table IV, we can
observe that our attack encounter slight success rate reduction
comparing to some existing works in the simulation when
only point cloud data is considered. We believe that this



Fig. 4. The scanning platform in the experiment.

TABLE III
COMPARISON OF EXISTING 3D ADVERSARIAL ATTACKS IN THE ATTACK

SETTING.

Approach Multiple models Black-box Physical
Xiang, et al. [12] 7 7 7

Liu, et al. [13] 7 7 7
Tsai, et al. [15] 7 7 3

Our method 3 3 3

reductions is caused by the limited perturbation space from
the constraints for constructing reasonable shape of mesh. In
return our attack achieves much higher success rate in the
physical world comparing to [15] since we directly form the
adversarial mesh from the beginning, while [15] reconstructs
meshes from adversarial point cloud and loses some necessary
details.

V. CONCLUSION

In this paper, we presented an attack algorithm that gen-
erates adversarial 3D objects against different types of deep
learning models in the 3D domain. Genetic-based algorithms
enable us to generate these adversarial objects in the black-
box setting without acquiring the internal information of the
target models. The experimental results showed that the printed
3D adversarial objects stay effective when attacking the deep
learning models. Our work provide motivation and inspiration
for following works targeting security problems related to 3D
sensors and corresponding deep learning models.
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