
Power-based Side-Channel Instruction-level Disassembler
Jungmin Park, Xiaolin Xu, Yier Jin, Domenic Forte and Mark Tehranipoor

FICS Research, University of Florida
Gainesville, FL 32611, USA

jungminpark@ufl.edu,{xiaolinxu,yier.jin,dforte,tehranipoor}@ece.ufl.edu

ABSTRACT
Modern embedded computing devices are vulnerable against mal-
ware and software piracy due to insufficient security scrutiny and
the complications of continuous patching. To detect malicious ac-
tivity as well as protecting the integrity of executable software, it
is necessary to monitor the operation of such devices. In this paper,
we propose a disassembler based on power-based side-channel to
analyze the real-time operation of embedded systems at instruction-
level granularity. The proposed disassembler obtains templates from
an original device (e.g., IoT home security system, smart thermo-
stat, etc.) and utilizes machine learning algorithms to uniquely
identify instructions executed on the device. The feature selection
using Kullback-Leibler (KL) divergence and the dimensional re-
duction using PCA in the time-frequency domain are proposed
to increase the identification accuracy. Moreover, a hierarchical
classification framework is proposed to reduce the computational
complexity associated with large instruction sets. In addition, co-
variate shifts caused by different environmental measurements and
device-to-device variations are minimized by our covariate shift
adaptation technique. We implement this disassembler on an AVR
8-bit microcontroller. Experimental results demonstrate that our
proposed disassembler can recognize test instructions including reg-
ister names with a success rate no lower than 99.03% with quadratic
discriminant analysis (QDA).

KEYWORDS
Power side-channel, instruction level disassembly, instruction set
architecture, embedded processors

1 INTRODUCTION
Thanks to the Internet of Things (IoT) and modern embedded com-
puting devices, our world is now more automated and connected
than ever before. However, such devices have become a regular tar-
get for many attacks. In a recent attack, IoT devices were targeted
by Mirai malware to be used as part of a botnet in distributed denial-
of-service (DDoS) attacks [2]. Another attack that is of concern
when a device is physically accessed by the attacker is software
theft or piracy [17]. This usually means unauthorized copying, ei-
ther by individuals for their own use or by companies who then
sell the illegal copies to users. Hence, reverse engineering of soft-
ware [3, 6] for piracy or copyright analysis is a common practice
in industry. Reverse engineering is a process that takes a software
program’s binary code and recreates it so as to trace it back to the
original source code. That is, a security engineer performs reverse
engineering to verify that the software running on a competitor’s
device is not a copy of his own genuine software.

Unfortunately, most embedded devices are incompatible with
conventional software-based malware detection mechanisms such
as antivirus software. Hardware-based malware detection using
low-level architectural events such as number of memory accesses
and immediate branches requires modification of embedded devices

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’18, June 24–29, 2018, San Francisco, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00
https://doi.org/10.1145/3195970.3196094

[19]. Reverse-engineering of protected firmware or software for
copyright litigation is very difficult since the software is stored
in the secure memory [11]. In order for a competitor to conceal
software intellectual property (IP) piracy, code and data can be
encrypted and then stored in the tamper-resistant memory.

A promising disassembly approach that does not require any
changes to the design of an embedded computing device would be
based on measurement of side-channel signals. This method could
rely on an external monitor, which passively observes the device
behavior without being directly connected to its I/O; thus avoiding
bypass by malware and other possible malicious modifications. The
disassembler can check whether a malicious code is inserted in the
IoT device by tracking the executing instructions and comparing
them with the original instruction flow. While reverse-engineering
of a protected software is extremely difficult, the side-channel dis-
assembler, however can recognize the behavior of decrypted code
and detect software IP piracy. Further, since side channel analysis
is nondestructive, it is the perfect candidate for reverse engineering
the software of legacy/obsolete systems, which are scarce by nature.
Among all side channel signals, power side-channel analysis pro-
vides a great candidate since it is already a well-studied approach
for key exfiltration in crypto hardware and only requires access
through a power pin.

Instruction-level reverse engineering solely through side-channel
is still relatively uncommon especially compared with side-channel
attacks [14]. Both exploit side-channel signals such as power [13]
or electromagnetic emanation [1] and require physical access, but
the goal of side-channel attack (SCA) is different. Its objective is to
only extract the secret key. Disassembly is more difficult than side-
channel attacks (SCA) for the following reasons. An instruction
from the program executes only once per execution path. Hence,
information to identify the instruction may be limited compared to
side-channel attacks which have the luxury of repeating thousands
of experiments with the secret key. Due to the limited informa-
tion available for disassembly, covariate shift problem [24] caused
by power measurement at different times or devices makes the
identification even more challenging . Moreover, the instruction-
level classifier or distinguisher only has as much time to classify
as the processor’s throughput for real-time malware detection. For
instance, if a processor executes 4 instructions every clock cycle
at 1 GHz, the distinguisher only has approximately 0.25(= 1/4)
nano-seconds per instruction.

A few research works have used side-channel traces for the disas-
sembly of instructions executing in a device. Statistical techniques
such as Bayesian classifiers can be used to construct classification
models from the known power consumption traces. Eisenbarth et
al. [9] achieved a recognition rate of 70.1% on 35 test instructions
and 50.8% on real code by applying a hidden Markov model. Ms-
gna et al. [18] accomplished 100% recognition rate on a chosen
set of 39 instructions in ATMega163-based smart cards running at
a clock frequency of 4MHz. They classified the power traces by
applying PCA in combination with the k (= 1)-nearest neighbors
(kNN) algorithm. The side-channel disassembler of Strobel at al.
[23] has a recognition rate 96.24% on test code and 87.69% on real
code on a PIC16F687 using multiple EM channels (antennas) with
a decapsulated package. The work described in [18] and [23] use
only instruction classes as distinguishing features to classify power
traces. More recently, McCann et al. [16] have used instruction-level
power models to spot even subtle leakage in implementations. This
is unlike the traditional power side-channel models to estimate
secret data, where only data specific switching is modeled.

https://doi.org/10.1145/3195970.3196094

Table 1: Comparison of existing side-channel disassembly.

[9] [18] [23] [16] Ours
Target µ-controller PIC16F687 ATMega 163 PIC16F687 ARM Cortex-M0 ATMega 328P

Clock 1 MHz 4 MHz 4 MHz 8 MHz 16 MHz
of Instructions 33 and 0 Regs. 39 and 0 Regs. 33 and 0 Regs. Emulating leakage 112 Insts. and 64 Regs.
Recognition rate 70.1 % 100 % 96.24 % – 99.03 %

Reduction PCA, Fisher’s LDA PCA Polychotomous LDA – PCA, KL-divergence
Classifier Multivariate Gaussian kNN kNN Linear regression LDA, QDA, SVM, Naïve

Side channel Power Power Multiple EM Power Power
CSA1 No No No No Yes

1 Covariate Shift Adaptation

Table 1 shows the comparison of existing side-channel disassem-
bly and our proposed disassembler. Existing solutions suffer from
the following shortcomings: (1) the small number of instruction
classes to recognize makes applicability of existing disassemblers
limited. The existing methods are not able to recognize operands
such as address of registers, making the reverse-engineering in-
complete. (2) the target devices are running at low clock frequency.
Disassembling these devices are easier than those with the higher
clock-frequency since the higher the frequency, the more difficult
signal acquisition would be and consequently more noise to han-
dle during analysis [10]. In order to reverse-engineer instructions
running on the high-frequency devices, specifically for run-time
detection of malware on critical systems, more advanced signal
processing and machine learning techniques are required.

In this paper, we present a power side-channel based disassem-
bler, implemented on an AVR micro-controller [15]. This disas-
sembler can be used for effective malware detection and reverse
engineering. We make the following contributions in this paper:

• A hierarchical framework is developed to classify signifi-
cantly more instructions (over 100 instructions in case of
AVR) as well as the address of the source register (Rr) and
the destination register (Rd) without statistical control flow
analysis (e.g., usingMarkov chains) for reverse engineering
of unknown software in real-time.

• New feature selection and dimensionality reduction using
Kullback-Leibler divergence and PCA in the time-frequency
domain are proposed and various machine learning clas-
sifiers are compared. In addition, a majority vote method
is taken into account in case of multiple classes to further
support real-time malware detection.

• We deal with the covariate shift problem which occurs in-
evitably in the non-stationary environment such as different-
time or different-device measurement. To minimize the co-
variate shift problem, covariate shift adaptation is applied.

• Our results from implementation on AVR micro-controller
indicate that the successful recognition rate (SR) of the
classifier is as high as 99.03% including the identification
of registers using test data.

Even though AVR micro-controller is not a the most complex mod-
ern device, it still represents a more challenging case study than
those in the current state-of-the-art research. We also believe that
our method can be a great starting point to disassemble even recent
embedded micro-controllers. The rest of the paper is organized as
follows. Section 2 outlines our instruction-level disassembly, im-
plemented on an AVR processor. Section 3 presents the proposed
feature selection and reduction technique. Section 4 deals with the
covariate shift problem. Section 5 presents the experimental setup
and results. Finally, Section 6 concludes the paper.

2 POWER BASED DISASSEMBLER
The main focus of the side-channel based disassembler is to extract
assembly level code from the side-channel leakage. A complete
side-channel disassembler should estimate which instruction is
executing, which register is used, or what value is processed with
only one power sample. In this section, we discuss our proposed

disassembler in the context of an AVR micro-controller (ATMega
328P) but emphasize that our approach is generalizable to devices
of similar or higher complexity.

Fig. 1 shows the process flow for our proposed disassembler.
First, power traces for pre-defined instruction classes are collected
using an oscilloscope through a power side-channel of a training
device. Second, the time-varying power traces are mapped into the
time-frequency domain by continuouswavelet transform. Third, the
feature selection using Kullback-Leibler (KL) divergence is executed.
Fourth, selected feature values are normalized. Fifth, the number of
feature variables is reduced by the dimensionality reduction using
PCA. Sixth, power traces with reduced feature variables are trained
by classifiers and then templates such as decision boundaries are
generated. Finally, based on the templates, power traces collected
from the target device (i.e., device under assessment) are classified
and then the disassembler generates reverse-engineered assembly
codes. Note that power traces of the target device (which may
be different from the training device) go though the same pre-
processing and dimensionality reduction as those of the training
device.

Figure 1: Process flow for our proposed disassembler.

2.1 Grouping Instructions
The ATMega 328P has 131 instructions [12]. Most of the instruc-
tions have single clock cycle execution. 112 instructions except
for residual control instructions, multiplication instructions, and
residual branch instructions can be recognized by our disassem-
bler. Since the number of classes corresponding to instructions
is very large, 112 instructions are divided into 8 groups based on
operands. The operands of the instruction are related to which
micro-architectural components such as ALU and data memory
being used. Since the different group of instructions uses differ-
ent architectural components, power signatures between different
groups are more distinguishable. For example, the first group in-
structions consist of opcode, a destination register (Rd) and a source
register (Rr). 12 arithmetic and logic instructions belong to the first
group. Table 2 summarizes all instructions, needed operands and
description in 8 groups.

Classification is performed hierarchically in three levels. A mea-
sured power trace l is classified into an instruction group among

Table 2: Grouping AVR instructions.

Group1 Group2 Group3 Group4 Group5 Group6 Group7 Group8
Insts. ADD, ADC, SUB ADIW, SUBI, SBCI COM, NEG, INC RJMP, JMP, BREQ LDS SEC, CLC, SEN SBRC, SBRS LPM

SBC, AND, OR SBIW, ANDI, ORI DEC, TST, CLR BRNE, BRCS, BRCC LD CLN, SEZ, CLZ SBIC, SBIS ELPM
EOR, CPSE, CP, SBR, CBR, CPI SER, LSL, LSR BRSH, BRLO, BRMI LDD SEI, SES, CLS BRBS, BRBC
CPC, MOV, MOVW LDI ROL, ROR, ASR BRPL, BRGE, BRLT STS SEV, CLV, SET SBI, CBI

SWAP BRHS, BRHC, BRTS ST CLT, SHE, CLH BST, BLD
BRTC, BRVS, BRVC STD BSET, BCLR

BRIE, BRID
Operands Rd, Rr Rd, K Rd k Rd, k Rr(Rd), b Rd, Z(+)

Rd, (−)X(+) A, b
Rd, (−)Y(+(q)) s, k
Rd, (−)Z(+(q)) s

of Insts. 12 10 13 20 24 15 12 6
Description Arith.1 Arith.1, Data.2 Bit.3, Arith.1 Bran.4 Data.2 Bit.3 Bran.4, Bit.3 Data.2

1 Arithmetic and logic instruction, 2 Data instruction, 3 Bit and bit-test instruction, 4 Branch instruction

8 groups at the first phase and then it is classified into a specific
instruction in the selected group at the second phase. Finally, the
disassembler decides which operands are used for the execution
in the third phase. Our proposed hierarchical classification signifi-
cantly reduces computational complexity in case of classification of
large classes significantly. For example, if binary classifiers such as
SVM are exploited and one-vs-one strategy is selected, K (K − 1)/2
classifiers where K is the number of classes, should be required. In
case of 112 classes, 6216 classifiers should be trained. On the other
hand, using hierarchical one-vs-one SVM, at most 218 classifiers
are necessary when a power trace is recognized as an instruction
in the 4th group: 218 =

(8
2
)
+
(20
2
)
. In addition, components of the

operand are automatically determined after finishing instruction
classification.

3 FEATURE SELECTION AND
DIMENSIONALITY REDUCTION IN
TIME-FREQUENCY DOMAIN

Measured power traces are mapped into two-dimensional time-
frequency region by continuous wavelet transform (CWT) [7]. The
wavelet transform has some advantages for side-channel analysis.
It is used to remove noise from side-channel leakage traces obtained
by oscilloscopes and to perfectly align collected traces [8]. In ad-
dition, the wavelet transform is required to solve covariate shift
problem which will be described in Section 4. Based on positive
results with CWT, we use the wavelet transform to extract distinct
features among all instruction classes to discriminate or classify
instructions. These distinct features should not be varying in non-
stationary environment. That is, distinct and not-varying features
in the non-stationary time-frequency domain are extracted from
the wavelet transform of the collected traces.

In the time domain, a fetch/decode clock cycle and an execu-
tion clock cycle of each instruction are associated with 315 (=
⌊2.5G/16M ∗ 2⌋ + 2 additional) sampling points based on our setup
at Section 5.1. But due to CWT transformation, each sampling point
is expanded into a 50-length vector including frequency compo-
nents. Thus, 315 sampling points from the time domain result in
15750 (315 × 50) sampling points in the transformed domain. In
order to extract distinct and not-varying points among 15750 sam-
pling points, Kullback-Leibler (KL) divergence [22] is used. The KL
divergence is an useful metric for the feature selection. The higher
the KL divergence between two random variables, the more distin-
guishable two random variables are. The specific sampling points
should have large KL-divergence value. An additional desirable
property is that the specific sampling points do not have depen-
dency (or co-linearity). The specific sampling points have locally
maximum value to satisfy the two conditions. In order to make two

classes more distinguishable, principle component analysis (PCA)
can be applied to these specific sampling points.

3.1 KL Divergence-based Feature Selection
Let fX (z) and fY (z) be the probability density functions of random
variables X and Y , respectively. The KL divergence captures the
distance between two distributions and is defined by the following
equation [22]:

DKL (X | |Y) =

∫
fX (z) log

fX (z)

fY (z)
dz. (1)

The KL divergence of two random variables with normal distribu-
tions can be computed easily [20]. The time-frequency varying KL
divergence between two group’s power signatures shows a prob-
abilistic distance between two different instructions. The peaks
of the KL divergence exhibit distinct differences between the two
traces. Wavelet transformed values at the specific time-frequency
points where the KL divergence exhibits a peak can be given as
a feature set to any classifier, such as Bayesian classifiers. How-
ever, all distinct feature points are not stationary. This means that
values at the specific time and frequency index can be changed
according to different measurement times or different program files
even if the same instructions are executed. These distinct feature
points based on KL divergence should be not varying in the non-
stationary environment. We define the distinct and not-varying
feature as follows:

Definition 3.1. 1) The between-class KL divergence is defined
as DB

KL (c f sc1 (j,k) ∥ c f sc2 (j,k)), where c f sci (j,k) is a set of CWT
coefficients at the frequency (or scale) index j and the time (or sam-
pling) index k in a class ci .
2) The within-class KL divergence is defined asDWKL (c f sci ,p1 (j,k) ∥
c f sci ,p2 (j,k)), where c f scl ,pm (j,k)) is a set of CWT coefficients at
the frequency (or scale) index j and the time (or sampling) index k of
a program pm in a class cl .
3) If DB

KL (c f sc1 (j,k) ∥ c f sc2 (j,k)) is local maxima (or peak value)
and DWKL (c f sci ,p1 (j,k) ∥ c f sci ,p2 (j,k)), for i = 1, 2 is less than
KL threshold, KLth , the index pair (j,k) is called a distinct and
not-varying feature point.

Fig. 2 shows five extracted feature points for classification be-
tween ADC and AND instructions. Not-varying feature points,NVPc =
{(j,k)} are selected such that DWKL (c f sc,pm (j,k) ∥ c f sc,pn (j,k)) <
KLth = 0.005 for 1 ≤ m , n ≤ 10, j = 1, 2, . . . 50, k = 1, 2, . . . 315
within each class c ∈ {ADC, AND} at Fig. 2 (a) and (c). Note that 2500
instructions for profiling in each class are distributed into 10 differ-
ent program files pi . Distinct feature points, DP = {(j,k)} between
different classes are extracted such that ∂2

∂j∂k D
B
KL (c f sADC (j,k)

Figure 2: Extracting feature points in the time-frequency do-
main to classify between ADC and AND using KL divergence.

| |c f sAND (j,k)) = 0 at Fig. 2 (b). Distinct and not-varying feature
points are extracted such that NVPADC ∩ NVPAND ∩ DP and then
5 highest distinct and not-varying feature points, DNVP (5) are
finally extracted at Fig. 2 (d). 5 distinct and not-varying feature
points of all possible combinations of two instructions in each each
group are unified such that ∪nci=1DNVP

(5)
i , where nc =

(
|C |
2
)
is the

number of all possible combinations. The number of unified is 205
in the first instruction group, which means reduction from 15,750
by 98.7%. These points are used as variables for PCA for further
dimensionality reduction.

3.2 Principal Component Analysis
Principal component analysis (PCA) is generally used for unsuper-
vised dimensionality reduction. It forms new variables which are
linear combinations of the original variables. The new variables
retain as much of the original variance as possible and are uncor-
related with each other. The number of new variables (k) is equal
to the number of original variables (p). A small number k ≪ p of
the principal components can account for much of the total system
variability. The feature points selected with KL divergence are used
as the original variables for PCA. The projected variables onto the
new coordinate system are more distinguishable.

4 COVARIATE SHIFT PROBLEM
In our initial experiment, 3000 power traces per each class are ob-
tained by the execution of instructions in 10 different program files.
2500 power traces and 500 power traces are randomly selected for
training and testing, respectively. This means that some power
traces for testing are generated from the same program files as
profiled power traces. This scenario is different from practical sce-
nario in which power traces are obtained by a real program file to
disassemble. The classifiers trained by the experimental scenario
cannot distinguish power traces in the real program due to the
covariate shift problem. Covariate shift problem is caused by the
different probability distribution of training data and testing data
such that Prte (x) , Prtr (x) even if the conditional probability of
classes given training data is the same as the conditional probability
given testing data (Pr[C |xtr] = Pr[C |xte]) [24].

Power traces in the same instruction should be identical in ideal
cases but when they are executed in different programs, they are
measured differently in our experiment. They have the similar shape
but different DC offsets. This covariate shift problem also occurs in
power measurement at different times or across devices [5]. Even
if power traces are generated by the same instructions, they can
be recognized into different instructions because of covariate shift
problem. Fig. 3 shows that power traces of 2 different AND programs

Figure 3: Best and worst feature selection based on KL diver-
gence.

(a) Instruction sequence in a pipeline (b) Program segment template

Figure 4: Instruction sequence in a pipeline and a program
segment template for ADD instruction.

are completely separate or combined depending on KL-divergence
based feature selection. When 3 lowest peak points are selected as
the feature set, AND power traces executed in two different programs
are gathered in a cluster. On the other hand, AND power traces are
scattered into 2 different groups when 3 highest peak points are
chosen as the feature set.

2700 power traces executed in 9 different programs are trained
and 300 power traces executed in a real program are tested per each
instruction like the practical scenario. Training data of any two
instructions such as ADC and ADD are separate but two test data such
as ADC and AND are rotated into the opposite direction as well as
having more overlapping area. SRs of the training data and test data
using QDA are 94.3% and 18.5 %, respectively. In order to solve this
problem, covariate shift adaptation at Section 5.5 will be applied.

5 EXPERIMENTS
5.1 Experimental Setup
For training or profiling, power traces are collected from anATMega
328P micro-controller with a clock frequency of 16MHz. Other five
ATMega 328P micro-controllers are used as target devices. Using
Tektronix MDO3102 oscilloscope, the voltage of a shunt resistor
(330 Ω) between the GND pin and the ground is measured. The
setup of the oscilloscope is 2.5GS/s, 250MHz bandwidth, 10k sample
points and sample mode.

Since the AVR micro-controller has 2 pipeline stages, a target
profiled instruction is affected by a previous instruction and a fol-
lowing instruction. Each power trace ismeasuredwith the following
program segment template: SBI, NOP, a randomly selected
instruction, target instruction, a randomly selected
instruction, NOP, CBI, where SBI(CBI) means that set (clear)
bit in I/O register and NOP means no operation. The SBI and CBI
instructions are executed for the trigger signal. In order to remove
power consumption of SBI and CBI instruction and electrical noise,
we compute the difference between each power trace and the refer-
ence power traces of SBI, 5 NOPs and CBI sequence. Fig. 4 shows
the instruction sequence in a pipeline and a program segment tem-
plate for obtaining a power trace for ADD instruction. For training
and classification, 3000 power traces for each instruction with ran-
domly selected source register Rr and destination register Rd (the
values of the Rr and Rd also are randomly distributed) are sampled.
We also measure 3000 power traces per unique Rd with randomly
selected instruction and Rr and 3000 power traces per unique Rr
with randomly selected instruction and Rd.

Figure 5: Successful recognition rate (SR) of (a) instruction
groups and (b) 1st group’s instructions.

In order to collect power traces automatically, we built an ac-
quisition framework which consists of a PC, an oscilloscope, an
Arduino board and software. 10 program files per each instruction
or register are uploaded to the Arduino sequentially to collect 3000
power traces since the flash memory of the Arduino is limited. A
file includes 300 program segment templates. We use Perl script to
generate Arduino code automatically. The generated files (.ino) is
uploaded to the board using Arduino IDE tool. For automatically
uploading 10 files per each class, MATLAB makes Arduino IDE
to upload a file as soon as previous program is complete. During
execution, power traces are collected using an oscilloscope and
stored in PC automatically. TekVISA (Tektronix’s Virtual Instru-
ment Software Architecture) provides communication interface
between the oscilloscope and the PC. All required software such
as Perl compiler, Arduino IDE and TekVISA can be controlled by
MATLAB.

5.2 Training and Classification for Instructions
After dimensionality reduction, 2500 power traces per each class are
used for the training. Linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA), support vector machine (SVM) and
naïve Bayes method are tested. fitcdiscr function in MATLAB
statistical toolbox is used to construct LDA and QDA classifiers and
fitcnb function is used to train a naïve Bayes classifier. LIBSVM
[4] is used for the SVM classifier with RBF kernel. The best penalty
parameter C and the best Gaussian kernel parameter γ = 1/σ 2 are
selected by the grid search with 3-fold cross-validation.

Fig. 5 shows SR of instruction groups and the 1st groups’s in-
structions depending on the number of principal components. SVM
classifier with RBF kernel has the best performance in terms of the
successful recognition rates (SR). The SR of instruction groups sat-
urates to 99.85% using SVM classifier with 43 variables and the SR
of the first group instructions is saturated to 99.7%. QDA classifier
using 43 variables also has 99.93% SR but it has lower SR than SVM
classifier when using less than 43 variables. SRs of other group’s
instructions saturates to greater than 99.5% using SVM with more
than 50 variables. Thus, SR of QDA to identify an opcode is at most
99.53% (99.6% × 99.93%) and at least 99.1% (99.6% × 99.5%). SR of
SVM to identify an opcode is from 99.55% (99.85% × 99.7%) to 99.35%
(99.85% × 99.5%).

5.3 Training and Classification for Registers
In order to recognize the address of the destination register Rd0
∼ Rd31 and the source register Rr0 ∼ Rr31, we follow the same
process. We collect power traces, profile to extract an appropriate
feature vector, and then classify. For each fixed target register, the
instruction opcode and the other register are randomly selected.
Dimensionality reduction techniques extract a feature vector from
each of the 2.5K power traces, which are used for training. The
other 500 power traces are used as the test set. QDA has the best
performance with 99.9% and 99.6% SR of Rd and Rr using 45 vari-
ables, respectively. As a result, SR of a instruction set including

Figure 6: Successful recognition rate (SR) of the 1st group’s
instructions using majority voting method and general
method.

opcode and both registers is at most 99.03% (99.53%×99.9%×99.6%)
using QDA.

5.4 Majority Voting Method
When classifying multiple classes (greater then 3 classes), one-vs-
one strategy using binary classifiers can be used. Let fi, j be the
binary classifier to distinguish between two classes ci and c j :

fi, j (x i, j) =

{
+1 if Pr[ci |x i, j] ≥ Pr[c j |x i, j]
−1 if otherwise (2)

wherex i, j is the feature vector after dimensionality reduction based
onDB

KL (ci | |c j),D
W
KL and PCA. Bymajority voting method, the class

ĉ is selected as follows:

ĉ = argmaxci ∈C
∑
i,j

fi, j (x i, j). (3)

The number of required binary classifiers is equal to
(
|C |
2
)
= K (K −

1)/2 where K is the number of classes.
Distinct and not-varying feature points based on KL divergence

depends on two instructions. Principal components transformed
from unifiedDNVP at Sec. 3.1 cannot be the best components in the
classification between any two instructions. But at Eq. (2), x i, j is
the best feature vector for the classification between ci and c j . Even
if the number of needed binary classifier is large, the number of
variables or the length of the feature vector in each binary classifier
can be reduced significantly without the loss of performance. The
number of variables can be an important parameter for disassembly
of high-clock frequency micro-controllers. In order to get over 99%
SR, at least 40 feature points (or variables) during 2 clock cycles
are required in our experiments. This means that the sampling rate
should be at least 20 times higher than the clock frequency. For
example, for a target device working at 1 GHz, a 20 Gs/s oscilloscope
is required. It is very expensive and not practical. If 10 feature points
are the requirement to satisfy 99% SR, an oscilloscope with 5 Gs/s
is enough. Thus, the number of feature points should be reduced
significantly.

Fig. 6 shows successful recognition rates of the 1st group’s in-
structions using majority voting method and previous general
method depending on the number of variables. SRs using majority
voting method with only 3 variables are 82.25 %, 83.22 %, 85 % and
82.02 % corresponding to LDA, QDA and SVM and Naïve Bayes clas-
sifier, respectively, which are significantly improved compared with
the previous general method. The SVM classifier with 9 variables
has 95.2 % SR and it has the best performance in all cases.

5.5 Covariate Shift Adaptation
The training data of each class have been generated from 9 different
programs which are not enough to estimate not-varying feature
points against the training programs in the practical scenario. The
number of training programs are increased to 19 which means that
the number of training data is equal to 5700. Also, KLth at Def. 2.1

Table 3: Successful recognition rate (SR) of classification be-
tween ADC and AND with covariate shift adaptation (CSA).

Classifier Without CSA Without Norm. With Norm.
QDA 18.5% 54.3% 92%
SVM 19.2% 57.8% 93.2%

Table 4: Successful recognition rate (SR) of classification be-
tween ADC and AND in 5 different devices.

Classifier Dev. 1 Dev. 2 Dev. 3 Dev. 4 Dev. 5
QDA 89.3% 91.5% 88.9% 92.3% 94.5%
SVM 90.4% 92.8% 90.8% 93.4% 95.6%

is reduced from 0.005 to 0.0005. That is, not-varying feature points
in each class are selected as follows:
NVPc =

{
(j,k) |DWKL

(
c f sc,pm (j,k) ∥ c f sc,pn (j,k)

)
< KLth

= 0.0005, 1 ≤ m , n ≤ 19, j = 1, 2, . . . , 50,k = 1, 2, . . . , 315}
(4)

The values of distinct and not-varying feature points between two
different classes are normalized in order to reduce the range of
shifted space. The normalization is an important process and com-
pared to without-normalization results. The number of variables
are reduced by PCA dimensionality reduction and 3 principle com-
ponents are selected as the variables. Table 3 shows the successful
recognition rate of classification between ADC and AND instructions
when modified sampling method is applied and this table shows the
comparison between normalized values and without-normalized
values. The SR using QDA is increased by 73.5 % compared with
18.5 %.

5.6 Covariate Shift Caused by Different Devices
Covariate shift problem also occurs in measured powers from differ-
ent devices which are the same model as the trained device. Based
on the template from a trained device, measured powers from 5
test devices are classified. 300 test power traces of ADC and AND
instructions per each device are collected for the comparison with
the previous result. Covariate shift problem caused by different
devices is similar to that by different programs. After covariate
shift adaptation, the SR is increased significantly. Table 4 shows
the results of 5 different devices. In summary, covariate shift prob-
lems caused by different programs and devices are minimized by
expanding sample space and searching not-varying feature points
with normalization.

5.7 Case Study: Malware Detection
An adversary can insert a malicious code which has the same func-
tionality as the original code but provides significant information
to the adversary. For example, the original key of AES encryption
is masked with a random number to prevent from the first-order
side-channel attack [21]. If the random number is a fixed value such
as all zeros binary number or all ones binary number, the masking
method is useless so that it has vulnerable against the first-order
side-channel attack. In malware, the original code, xor r16, r17
is changed into xor r16, r0, where an original 8-bit subkey, a
8-bit random number and a zero number are stored in r16, r17
and r0, respectively. That is, the original key is still stored in r16
after executing the instruction and a following non-linear operation
(Sbox) with the unmasking key generates significant side-channel
leakage. In this case, our disassembler can detect the change of the
source register by malware perfectly.

6 CONCLUSION AND FUTUREWORK
Consumer electronics devices and IoT devices are targeted by mal-
ware such as Mirai. They do not have ability to detect or prevent
malware. In order to detect malware, monitoring IoT devices is re-
quired. Instruction-level disassembly through power side-channel

can be used as themonitor.We describe our preliminary experiences
with instruction level disassembly of an AVR micro-controller. We
are able to identify an instruction set including opcode and registers
with 99.03% accuracy through power side-channel. This technique
can be used with static code analysis in order to increase accuracy
of real code. In our future work, we will apply our method on real
code to mimic the complete reverse-engineering in practical world
scenario. Also, state-of-the-art microcontrollers running at higher
frequency clock will also be tested to evaluate the performance of
our proposed disassembler.

ACKNOWLEDGMENTS
This work is supported in part by NIST, Award #60NANB17D040.

REFERENCES
[1] Dakshi Agrawal, Josyula R. Rao, and Pankaj Rohatgi. 2003. Multi-channel Attacks.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2–16.
[2] Waqas Amir. 2016. Hackers are increasingly targeting IoT De-

vices with Mirai DDoS Malware. https://www.hackread.com/
iot-devices-with-mirai-ddos-malware/. (Oct. 2016).

[3] Gerardo Canfora, Massimiliano Di Penta, and Luigi Cerulo. 2011. Achievements
and Challenges in Software Reverse Engineering. Commun. ACM 54, 4 (April
2011), 142–151.

[4] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A Library for Support
Vector Machines. ACM Trans. Intell. Syst. Technol. 2, 3, Article 27 (May 2011),
27 pages.

[5] Omar Choudary andMarkus G. Kuhn. 2014. Template Attacks on Different Devices.
Springer International Publishing, Cham, 179–198.

[6] Teodoro Cipresso and Mark Stamp. 2010. Software Reverse Engineering. Springer
Berlin Heidelberg, Berlin, Heidelberg, 659–696.

[7] Leon Cohen. 1995. Time-frequency Analysis: Theory and Applications. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.

[8] Nicolas Debande, Youssef Souissi, M. Abdelaziz El Aabid, Sylvain Guilley, and
Jean-Luc Danger. 2012. Wavelet Transform Based Pre-processing for Side Chan-
nel Analysis. In Proceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture Workshops (MICROW ’12). 32–38.

[9] Thomas Eisenbarth, Christof Paar, and BjÃűrn Weghenkel. 2010. Building a
Side Channel Based Disassembler. In Transactions on Computational Science X,
Marina L. Gavrilova, C.J. Kenneth Tan, and Edward David Moreno (Eds.). Lecture
Notes in Computer Science, Vol. 6340. Springer Berlin Heidelberg, 78–99.

[10] Jake Longo Galea, Elke De Mulder, Daniel Page, and Michael Tunstall. 2015. SoC
it to EM: electromagnetic side-channel attacks on a complex system-on-chip.
IACR Cryptology ePrint Archive 2015 (2015), 561.

[11] Michael Henson and Stephen Taylor. 2014. Memory Encryption: A Survey of
Existing Techniques. ACM Comput. Surv. 46, 4, Article 53 (March 2014), 26 pages.

[12] Atmel Inc. 2016. AVR Instruction set manual. (2016). http://www.atmel.com/
images/Atmel-0856-AVR-Instruction-Set-Manual.pdf

[13] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.
Springer-Verlag, 388–397.

[14] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. 2007. Power Analysis
Attacks: Revealing the Secrets of Smart Cards (Advances in Information Security).
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[15] Muhammad Ali Mazidi, Sarmad Naimi, and Sepehr Naimi. 2010. AVR Microcon-
troller and Embedded Systems: Using Assembly and C (1st ed.). Prentice Hall Press,
Upper Saddle River, NJ, USA.

[16] David McCann, CarolynWhitnall, and Elisabeth Oswald. 2016. ELMO: Emulating
Leaks for the ARM Cortex-M0 without Access to a Side Channel Lab. Cryptology
ePrint Archive, Report 2016/517. (2016).

[17] Amir Moradi, David Oswald, Christof Paar, and Pawel Swierczynski. 2013. Side-
channel Attacks on the Bitstream Encryption Mechanism of Altera Stratix II:
Facilitating Black-box Analysis Using Software Reverse-engineering. In Proceed-
ings of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays (FPGA ’13). 91–100.

[18] Mehari Msgna, Konstantinos Markantonakis, and Keith Mayes. 2014. Precise
Instruction-Level Side Channel Profiling of Embedded Processors.

[19] M. Ozsoy, K. N. Khasawneh, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and
D. Ponomarev. 2016. Hardware-Based Malware Detection Using Low-Level
Architectural Features. IEEE Trans. Comput. 65, 11 (2016), 3332–3344.

[20] Jungmin Park and Akhilesh Tyagi. 2016. Security Metrics for Power Based
SCA Resistant Hardware Implementation. In 29th International Conference on
VLSI Design and 15th International Conference on Embedded Systems, VLSID 2016,
Kolkata, India, January 4-8, 2016. IEEE Computer Society, 541–546.

[21] Emmanuel Prouff and Matthieu Rivain. 2007. A Generic Method for Secure SBox
Implementation. Springer Berlin Heidelberg, Berlin, Heidelberg, 227–244.

[22] S. Kullback and R. A. Leibler. 1951. On Information and Sufficiency. The Annals
of Mathematical Statistics 22, 1 (1951), 79–86.

[23] Daehyun Strobel, Florian Bache, David Oswald, Falk Schellenberg, and Christof
Paar. 2015. Scandalee: a side-channel-based disassembler using local electromag-
netic emanations. In Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition, DATE 2015, Grenoble, France, March 9-13, 2015. 139–144.

[24] Masashi Sugiyama and Motoaki Kawanabe. 2012. Machine Learning in Non-
Stationary Environments: Introduction to Covariate Shift Adaptation. The MIT
Press.

https://www.hackread.com/iot-devices-with-mirai-ddos-malware/
https://www.hackread.com/iot-devices-with-mirai-ddos-malware/
http://www.atmel.com/images/Atmel-0856-AVR-Instruction-Set-Manual.pdf
http://www.atmel.com/images/Atmel-0856-AVR-Instruction-Set-Manual.pdf

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

