
AVFSM: A Framework for Identifying and Mitigating
Vulnerabilities in FSMs

Adib Nahiyan1, Kan Xiao2, Kun Yang1, Yier Jin3, Domenic Forte1 and Mark Tehranipoor1
1University of Florida; 2University of Connecticut; 3 University of Central Florida

{adib1991, k.yang}@ufl.edu; kanxiao@engr.uconn.edu; yier.jin@eecs.ucf.edu; {dforte, tehranipoor}@ece.ufl.edu

ABSTRACT
A finite state machine (FSM) is responsible for controlling the over-
all functionality of most digital systems and, therefore, the security
of the whole system can be compromised if there are vulnerabili-
ties in the FSM. These vulnerabilities can be created by improper
designs or by the synthesis tool which introduces additional don’t-
care states and transitions during the optimization and synthesis
process. An attacker can utilize these vulnerabilities to perform
fault injection attacks or insert malicious hardware modifications
(Trojan) to gain unauthorized access to some specific states. To
our knowledge, no systematic approaches have been proposed to
analyze these vulnerabilities in FSM. In this paper, we develop
a framework named Analyzing Vulnerabilities in FSM (AVFSM)
which extracts the state transition graph (including the don’t-care
states and transitions) from a gate-level netlist using a novel Auto-
matic Test Pattern Generation (ATPG) based approach and quanti-
fies the vulnerabilities of the design to fault injection and hardware
Trojan insertion. We demonstrate the applicability of the AVFSM
framework by analyzing the vulnerabilities in the FSM of AES and
RSA encryption module. We also propose a low-cost mitigation
technique to make FSM more secure against these attacks.

1. INTRODUCTION
A major challenge associated with designing secure integrated

circuits (ICs) is the diversity of existing and emerging attacks, at-
tack goals, and potential countermeasures. It has been demon-
strated that the security of cryptosystems, SoCs (system on chips)
and micro-processor circuits can be compromised using timing anal-
ysis attacks [1], power analysis attacks [2], exploitation of design
for test (DFT) structures [3], and fault injection attacks [4]. Also,
due to the globalization of the semiconductor design and fabri-
cation process, ICs are vulnerable to malicious modifications, re-
ferred to as hardware Trojans [5]. These hardware Trojans can cre-
ate backdoors in the design through which sensitive information
can be leaked and other possible attacks (e.g., denial of service,
reduction in reliability, etc.) can be performed.

Current research is largely directed towards protecting the data
path of the critical components against the aforementioned attacks.
On the contrary, few work have focused on protecting the controller
circuit of the device. Controller circuits are generally realized with
a Finite State Machine (FSM) and the FSM is responsible for con-
trolling the functionality of the whole system. The security of the
overall system will be compromised if the FSM in the controller
circuit is successfully attacked (e.g., by injecting fault or by Trojan
insertion). In [6], authors have shown that the secret key of RSA en-
cryption can be leaked by injecting fault into the FSM of the cryp-
tographic device implementing the Montgomery ladder algorithm
even if the data path is properly protected. To protect the FSM
from fault injection attacks, concurrent error detection (CED) tech-
niques (e.g., Triple Modular Redundancy, parity prediction, etc.)
have been proposed in the literature [6]. These methods assume
specific error models and thus will not work for other adversarial
models [7]. Also, none of these methods consider the vulnerabili-
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’16, June 05-09, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4236-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2897937.2897992

ties introduced by the synthesis tool.
In [8], authors have shown that the synthesis process of the FSM

can introduce security risks in the implemented circuit by insert-
ing additional don’t-care states and transitions. In the RTL level of
FSM there are don’t-care conditions where the next state or the out-
put of a transition are not specified. Logic synthesis tools take ad-
vantage of these don’t-care conditions to optimize the design by in-
troducing deterministic states and transitions for the don’t-care con-
ditions. The authors in [8] have shown that an attacker can utilize
these don’t-care states and transitions introduced by the synthesis
process to implant hardware Trojans into the design and make the
design untrusted. However, the authors did not specify an approach
to evaluate the vulnerabilities introduced by these don’t-care states
and transitions.

There is a need for systematic approaches to identify vulnera-
bilities and security issues associated with ICs as early as possible
in the design flow. The cost of fixing vulnerabilities found at later
stages of design or post-silicon is significantly higher, following the
well-known rule of ten. In addition, unlike software or firmware,
there is little to no flexibility in changing or releasing post-shipment
patches for hardware. Unfortunately, to our knowledge there are
few efforts in place to systematically identify and quantify vulnera-
bilities present in ICs. In [9], the authors have presented a vulnera-
bility analysis to determine a circuit’s susceptibility to Trojan inser-
tion at behavioral level. In [10], authors have proposed a leakage
assessment methodology to evaluate the side channel vulnerability
of an IC against power analysis attacks. The authors in [11] have
proposed a metric to evaluate the vulnerability of a hardware struc-
ture to setup time violation based fault injection attacks. However,
none of these techniques can be applied to FSM, as the vulnera-
bility analysis of the FSM presents some unique challenges (e.g.,
existence of don’t-care states and transitions) which we will discuss
in the subsequent sections.

In this paper, we propose a framework, called Analyzing Vulner-
abilities in FSM (AVFSM) to quantitatively analyze and evaluate
how susceptible a FSM is against fault injection and/or Trojan at-
tacks. To the best of our knowledge, this is the first systematic ap-
proach to analyze the vulnerabilities present in the FSM. We make
the following major contributions:

• We propose a novel ATPG-based technique to extract the
functionality of the FSM from a gate-level netlist. In addition
to the states and transitions specified in the RTL level, our
proposed technique can extract the don’t-care states and tran-
sitions which are introduced during the synthesis process.
• Based on the extracted state transition table, our proposed

framework, AVFSM analyzes each transition and reports all
the transitions during which a fault can be injected to gain
unauthorized access to some secured or protected states.
• We propose two metrics that use the extracted information

as well as the design to quantify how susceptible the FSM
is to fault injection and hardware Trojans. We analyze each
reported transition using static timing analysis to determine
the difficulty of inducing setup time violation based fault in-
jection attacks.
• We perform case studies for the FSM of AES and RSA en-

cryption modules using the proposed metrics. The results
show that the vulnerability of the FSMs described above is a
function of the state encoding scheme used. To our knowl-
edge, this is a noteworthy observation that could impact fu-
ture approaches to FSM design.
• We propose a low-cost mitigation technique to make the FSM

secure against the aforementioned attacks. Our proposed

Figure 1: AES encryption module [12]. (a) AES encryption data path (b)
FSM of the AES encrption controller. KR, DS stands for Key Ready and
Data Stable signal, respectively.

technique replaces the state flip-flops (FFs) with programmable
FFs that transfer the FSM into the reset state whenever a pro-
tected state is tried to be accessed from an unauthorized state.

The rest of the paper is organized as follows. In Section 2, we
provide the necessary background on FSM. In Section 3, we elabo-
rate on the possible attacks against FSM. We discuss our proposed
AVFSM framework in Section 4. We present our results in Section
5 and propose a low cost mitigation approach in Section 6. We give
our concluding remarks in Section 7.

2. PRELIMINARIES AND DEFINITIONS
An FSM is formally defined as a 5-tuple (S, I,O,ϕ,λ), where S

is a finite set of states, I is a finite set of input symbols, O is a finite
set of output symbols, ϕ : S× I→ S is the next-state function and
λ : S× I→ O is the output function.

For convenience, an FSM is typically represented as a directed
graph where each vertex represents a state s ∈ S and an edge repre-
sents the transition t = T (x,y) from current state x to its next state
y. This graph is referred to as a state transition graph (ST G). In
the ST G each state can be accessed from a set of states which we
define as the accessible set of states,

A(x) = {y | y is accessible f rom x} (1)
In this paper, we define two more sets, P and L, which are both

specified by the designer. P is the set of protected states and L is a
set of authorized states that are allowed access to a protected state
p, that is A(L) = {p | p ∈ P}. If any state p is accessed by any
state apart from states in L then the security of the FSM can be
compromised.

In the behavioral specification of the FSM there are don’t-care
conditions where the next state or the output of a transition are not
specified. During the synthesis process, the synthesis tool tries to
optimize the design by introducing deterministic states and tran-
sitions for the don’t-care conditions. Let us consider the FSM F ′
implemented by the synthesis tool from the behavioral description
of the FSM F . Let, S and S′ represent the set of states and T and
T ′ represent the set of transitions in F and F ′, respectively. The set
of don’t-care states and transitions (SD and TD) introduced by the
synthesis process are defined as follows,

SD = {s′ |(s′ ∈ S′)∩ (s′ /∈ S)}; TD = {t ′ | (t ′ ∈ T ′)∩ (t ′ /∈ T)}
(2)

3. THREAT MODEL
In this section, we explore the possible attacks against FSM and

show how these attacks can compromise the security of the overall
system. We shall use the controller circuit of an AES encryption
module [12] (see Fig. 1(b)) as an example to demonstrate the fea-
sibility and effectiveness of these attacks.

The state transition diagram of the FSM shown in Fig. 1(b) im-
plements the AES encryption algorithm on the data path shown in
Fig. 1(a). The FSM is composed of 5 states: ‘Wait Key’, ‘Wait
Data’, ‘Initial Round’, ‘Do Round’ and ‘Final Round’. Each of
these states controls specific modules during the ten rounds of AES
encryption. After ten rounds, the ‘Final Round’ state is reached and

the FSM generates the control signal f inished = 1 and this signal
stores the result of the ‘Add Key’ module (i.e., the ciphertext) in
the ‘Result Register’. For this FSM, we define ‘Final Round’ as a
protected state because if an attacker can gain access to the ‘Final
Round’ without going through the ‘Do Round’ state then premature
results will be stored, potentially leaking the secret key. For exam-
ple, if an attacker can get to ‘Final Round’ state from the ‘Initial
Round’ state, then instead of the ciphertext, key⊕ plaintext value
will be stored in the ‘Result Register’ and the attacker can easily
obtain the key of the AES encryption. Therefore, for this example,
the set of protected states is P = {Final Round} and the set of au-
thorized states L= {Do Round}. Consider the states and transitions
marked in red in the ST G of Fig. 1(b) which represent don’t-care
states (SD) and transitions (TD) introduced by the synthesis tool.

We will consider the following attacks against the FSM:
Fault Injection Attack: This attack strategy relies on injecting

a fault in the FSM during a specific transition that will cause the
FSM to enter a protected state p through a state other than an au-
thorized state in L. The attacker may also inject the fault to go to a
don’t-care state that has access to a protected state (e.g., in Fig. 1(b)
an attacker can inject a fault to go to state ‘Don’t Care_1’ and ac-
cess the protected state ‘Final Round’ from this state). For the fault
attack model, we assume the attacker is the end user and manipu-
lates the clock signal, supply voltage, or operating temperature to
inject such faults.

Trojan Attack: In this attack scenario, the attacker inserts il-
legal states or manipulate the ST G so that the FSM will go to the
protected state when a certain signal is triggered. While doing these
malicious modifications, the attacker’s objective is to design a hard-
ware Trojan that occupies negligible portion of the overall circuit
and has little effect on the power and timing of the original circuit
so that the Trojan can evade the verification and validation testing.
The presence of the don’t-cares gives the attacker a unique advan-
tage to insert Trojans that exploit these states and transitions. If a
don’t-care state has access to a protected state then it poses the most
serious threat (e.g. the state ‘Don’t Care_1’in Fig. 1(b)), in which
case the attacker only needs to add a few gates without changing
the original FSM structure in order to go to the protected state from
that don’t-care state when the trigger signal is launched. Note that
for this attack, we consider the attacker to be an in-house designer
(i.e., rogue employee) or an untrusted foundry.

It is clear from the above description that the don’t-care states
and transitions inserted by the synthesis tool can lead to several
major security vulnerabilities.

4. AVFSM FRAMEWORK
Our objective is to develop a comprehensive framework, called

AVFSM, for automatically analyzing the vulnerability of FSMs
against fault injection and Trojan attacks. The proposed framework
will be the first, to the best of our knowledge, to address such vul-
nerabilities in the FSM. AVFSM takes as input (i) gate-level netlist
of the design; (ii) FSM synthesis report; and (iii) user given inputs
and then outputs the vulnerabilities present in the FSM. In this pa-
per, we also tie the mentioned vulnerabilities to a set of metrics so
that each FSM’s design can be quantitatively analyzed.

The overall workflow of our AVFSM framework is shown in
Fig. 2. The AVFSM framework is composed of four modules:

• FSM Extraction (FE): Extracts the ST G of the FSM from
the gate-level netlist.
• Don’t-care SD&TD Identification (DCST I): Reports the SD

and TD introduced by the synthesis process.

Figure 2: Overall workflow of the AVFSM framework.

Table 1: Symbols and notations
Symbols Definitions Symbols Definitions
P set of protected states NV T total number of vulnerable transitions
L set of authorized states PathFS(i) maximum path delay of ith state FF
SD set of don’t-care states SF susceptibility factor
TD set of don’t-care transitions PV T percentage of vulnerable transitions
FS state flip-flop (FF) ASF average susceptibility factor
SEN state encoding V FFI vulnerability factor of fault injection
V T vulnerable transitions V FTro vulnerability factor of Trojan insertion

• Fault Injection Analysis (FIA): Reports a quantitative mea-
sure of the vulnerability of FSM to fault injection attack.
• Trojan Insertion Analysis (T IA): Reports a quantitative mea-

sure of the vulnerability of FSM to Trojan insertion.
The brief description of each module will be given in the subse-

quent sections. Table 1 presents the symbols and notations that we
use throughout this paper.
4.1 Extraction of STG

To analyze vulnerabilities in the FSM, we first need to extract
the state transition graph (ST G) from the synthesized gate-level
netlist. The extracted ST G must incorporate the don’t-care states
and transitions which were introduced by the synthesis process.
Existing work in literature only focuses on FSM reverse engineer-
ing from gate-level netlist [13], [14]. However, none of these tech-
niques can extract the ST G with the SD and TD.

One straightforward approach would be to perform a functional
simulation of the FSM with all possible input patterns and produce
the ST G. However, this technique also cannot extract the don’t-care
states and transitions as these don’t-care states cannot be accessed
under the normal operating conditions of the FSM (see Fig. 1(b)). It
is because of the fact that the synthesis tool introduces these don’t-
care states in such a way that these states cannot be accessed from
the normal states (states mentioned in the RTL code); otherwise the
original functionality of the FSM will be altered.

We propose an automatic test pattern generation (ATPG) based
FSM extraction technique which can produce the ST G with the
don’t-care state and transitions from the synthesized netlist. Our
proposed extraction technique takes the gate-level netlist and the
FSM synthesis report as inputs, and automatically generates the
ST G. Here, our assumption is that this vulnerability analysis will
be performed by the designer, who has access to the RTL code,
gate-level netlist, synthesis report and therefore has knowledge of
the functionality of the FSM.

Module FE of our AVFSM framework is responsible for this
extraction process. The algorithm of this module is shown in Al-
gorithm 1. The algorithm includes two procedures; procedure I
generates a modified netlist for the ATPG analysis and the proce-
dure II extracts the ST G of the FSM.

Procedure I first identifies the state flip-flops (FS) using the FSM
synthesis report generated by the synthesis tool (procedure I, line
4). In this work, we use the dc_shell (Synopsys) tool’s report_fsm
command to generate the report. The report contains names of the
state registers (FS) and the state encoding information (SEN). The
naming of the registers is conserved during the synthesis process
and we can identify the state FFs using the FSM synthesis report.

After identifying the state FFs, our algorithm searches if there are
any non-state FFs (fNS) present in the input cone of the state FFs
(see Fig. 3(a)) (procedure I, line 6). These non-state FFs are typ-
ically counters and they influence the state transitions of the FSM
(e.g., in Fig. 1(b) the No_Rounds in Do Round state is counted with
four counter FFs). We wish to determine the logic values of these
non-state FFs which cause a transition in the ST G. For example,
when four counter FFs reach logic value of 1010, the state transi-
tion from Do Round to Final Round should take place.

Procedure I then generates the modified netlist for the ATPG
analysis according to the steps shown in lines 5 to 16. The mod-

Figure 3: (a) Original FSM (b) Modified FSM for ATPG-based STG ex-
traction.

Algorithm 1 Extraction of STG of FSM
1: procedure I: MODIFIED NETLIST GENERATION
2: Input: Gate-level netlist of the FSM, FSM synthesis report
3: Output: Modified netlist for ATPG-based FSM extraction
4: FS ← Identify state FFs
5: for each f ∈ FS do
6: fNS ← Identify non-state FFs in the input cone of f
7: Remove fNS and add the net where Q pin of fNS was connected as pri-

mary input, PIFNS
8: Add inverter to compensate for QN pin of fNS
9: end for

10: for each f ∈ FS do
11: Remove f from the Netlist
12: Add the net where Q pin of f was connected as primary input,

PIPresentState
13: Add XOR gate at the net where D pin of f was connected
14: Add the other input of XOR gate as primary input, PIXOR
15: ORed all the outputs of XOR gates and add output of the OR gate as

primary output, POOR
16: Add inverter to compensate for QN pin of f
17: end for
18: end procedure
1: procedure II: STATE TRANSITION GRAPH EXTRACTION
2: Input: Modified gate-level netlist, FSM synthesis report
3: Output: Extracted State Transition Graph
4: SEN ← Get state encodings
5: for each s ∈ SEN do
6: Apply the logical value of s as constraint on PIXOR
7: Remove all faults and add stuck-at-1 fault at POOR
8: Generate test patterns n times for the mentioned fault
9: Extract the present state values and conditions that causes transition to s

from the generated test patterns
10: end for
11: end procedure

ified netlist is shown in Fig. 3(b) and the original FSM is shown
in Fig. 3(a). In the modified netlist, the output nets of the state
FFs (which define the present state) and the non-state FFs (which
define conditions for state transition) are connected as primary in-
puts, PIPresentState and PIFNS. Also, XOR gates are placed at each
input net of Fs and the other input of the XOR gate is connected as
primary input, PIXOR. The output pins of the XOR gates are ORed
together and the output pin of the OR gate is added as primary out-
put, POOR. This modified netlist will be used by procedure II to
generate ST G of the FSM.

Procedure II determines the present states and input conditions
which cause transition to a particular state s ∈ SEN . The basic idea
is to first apply the logical values of s as constraints on PIXOR and
generate test patterns for stuck-at-1 fault at POOR (procedure II,
line 6-8). To generate patterns for this fault, the ATPG tool must
produce 0 at POOR which requires the logic values at the input of
the XOR gates to match with the constraints (s) applied on PIXOR.
In other words, the ATPG tool will generate the logic values of
present states (PIPresentState) and input conditions (i.e., input pins
of the FSM and PIFNS) which cause transitions to state s. We gen-
erate the test patterns n number of times using Tetramax (Synop-
sys) tool’s n-detect option to get all possible present states and in-
put conditions which cause transition to s. Although this option
does not guarantee generation of all possible patterns for a specific
fault, in our experiments we have verified that by specifying suit-
able value of n, we can extract the whole ST G.

After Module FE extracts the ST G from gate-level netlist, Mod-
ule DCST I compares it to the ST G from the RTL code and reports
the additional don’t-care states and transitions. There are commer-
cial tools available which can extract the ST G from RTL code. In
this paper we have used Altera’s Quartus tool for this purpose.
4.2 Vulnerability Analysis: Fault Injection

In this section, we use the extracted ST G to analyze how sus-
ceptible the FSM is to fault injection attacks. In our analysis, we
consider the faults which can be injected by violating the setup tim-
ing constraints using overclocking, voltage starving, and/or heating
the device [15]. These types of attacks require low-cost equipment
and pose the most serious threat. In this paper, we do not consider
attackers with the capabilities to induce faults in one or more logic

Figure 4: Setup time violation based fault injection attack. (a) and (b) are
two examples where fault is not possible and possible respectively.

Algorithm 2 Conditions for fault attack
1: procedure
2: Input: Extracted State Transition Graph
3: Input: set of protected state P . User given input
4: Output: Conditions for successful fault attack
5: T (x,y)← Extracted State Transition Graph
6: for each T (x,y) do . Transition from x to y
7: Sx = [bx(n−1).....bx1bx0] . Sx is state encoding of x
8: Sy = [by(n−1).....by1by0] . b represents each bit of S
9: P = [bp(n−1).....bp1bp0]

10: Compute C = ∏
(n−1)
i=0 ((bxi⊕byi)+(bxi.bpi))

11: if (C == 1) then
12: Fault attack possible for T (x,y)
13: V T (x,y)← T (x,y)
14: for i = 0 to (n−1) do
15: if (bxi⊕byi) then
16: if (bxi == bpi) then
17: PathViolatedx,y = {PathFs(i)}
18: else
19: PathOKx,y = {PathFs(i)}
20: else
21: PathNoE f f ectx,y = {PathFs(i)}
22: end for
23: else
24: Fault attack not possible for T (x,y)
25: end for
26: end procedure

gates of a circuit with a precisely focused light beam.
Estimating the vulnerability of hardware cryptosystems against

timing violation attacks have been recently proposed in [11]. How-
ever, their proposed technique can only be applied to the data path
and not to the FSM. Unlike data path, the FSM presents some
unique challenges in vulnerability analysis of fault injection attack
(e.g., existence of don’t-care states and transitions). Here, we pro-
pose a technique which analyzes each transition of the ST G and
based on a proposed metric quantitatively measures how suscepti-
ble that transition is to a fault injection attack. Based on the result,
our AVFSM framework will automatically report overall vulnera-
bility measures of the FSM to fault attack.

Our vulnerability analysis is based on the observation shown
in Fig.4. Let us consider the state transition T (00,10) where the
current state is 00 and the next state is 10. During this transition,
one cannot perform time violation based fault injection attack to go
to state 01 (see Fig. 4(a)). It is because during this state transition
(T (00,10)), the LSB bit of both the current state and the next state
remains 0 and therefore, a setup time violation based fault cannot
be injected at this bit position to change the bit value to 1. On the
other hand during T (10,01), one can inject a fault to go to state
11 (see Fig. 4(b)). To successfully inject this fault, the setup time
constraint of MSB state FF needs to be violated whereas the setup
time constraint of LSB state FF needs to be maintained. In other
words, delay of the logic path of MSB state FF needs to be greater
than the delay of the logic path of LSB state FF.

To perform the fault vulnerability analysis, Module FIA of our
proposed AVFSM framework first reads the extracted ST G and ob-
tains the set of protected state P from the designer. Then the mod-
ule looks into each state transition and analyze if a fault can be in-
jected during this transition to gain access to a protected state. This
analysis is performed according to Algorithm 2. The algorithm
first computes the condition, C (line 10) for each transition and if
C == 1 then it considers the respective transition as Vulnerable
Transition, V T (lines 11-12). V T is defined as a set of transitions
during which a fault can be injected to gain access to a protected
state. For each V T , Algorithm 2 reports the conditions that need
to be satisfied to perform a setup time violation based fault attack
which are shown below,
• PathViolated: setup time constraint of the state FF in this

path needs to be violated (lines 16-17).
• PathOK: setup time constraint of the state FF in this path

needs to be maintained (lines 18-19).
• PathNoE f f ect: state logic bit in this path does not change

during the transition and therefore this path has no impact on
the vulnerability analysis (lines 20-21).

Apart from the protected states, Module FIA also considers the
don’t-care sates that have access to the protected states (e.g., the
Don’t-care_1 state in Fig. 1(b)) and reports the transitions as V T
which can give access to these don’t-care states. These don’t-care
states are defined as Dangerous Don’t-Care States (DDCS) and
mathematically can be represented as,

DDCS = {s′ | (A(s′) = P) ∩ (s′ ∈ SD)} (3)
Now, each V T may not pose the same level of threat to the im-

plemented FSM. To quantify how susceptible each V T is to fault
injection attack, Module FIA uses Synopsys′s Primetime tool (for
static timing analysis (STA)) to get the maximum path delay of
each state FFs. We propose the susceptibility factor metric, SF to
quantitatively measure the vulnerability of each transition is to fault
injection attack,

SF =
PathDi f f erence

avg(PathFS)
(4)

SF is function of PathDi f f erence where PathDi f f erence is defined as,

PathDi f f erence = PathFS(i)−PathFS(j)
where i ∈ PathViolated and j ∈ PathOK

(5)

Here, PathFs(i) represents the maximum path delay to ith state
FF and avg(PathFS) is calculated by taking the mean value of all
the PathFS. Note that we consider the PathFS to be normally dis-
tributed with the mean value of maximum path delay (reported by
STA) and a variance value of 5% of avg(PathFS) to take into ac-
count of process variation.

Now, a high value of PathDi f f erence between PathViolated and
PathOK means that the attacker has a greater ability to successfully
inject the fault. Therefore, a higher SF indicates that the respective
V T is more susceptible to fault injection attack. On the other hand
if SF is negative then it means delay of PathOK is higher than delay
of PathViolated and fault injection for this transition is not feasible
in the implemented circuit. Therefore, the transitions with negative
SF is removed from the set of vulnerable transitions V T .

Module FIA use the metric, vulnerability factor of fault injec-
tion (V FFI) to measure the overall vulnerability the FSM to fault
injection attack. V FFI is defined as follows

V FFI = {PV T (%),ASF},where (6)

PV T (%) =
TotalVulnerable_Transition(NV T)

TotalTransition
, ASF =

∑
NV T
i=1 SF(i)

NV T

The metric V FFI is composed of two parameters {PV T (%),ASF}.
PV T (%) indicates the percentage of V T to TotalTransition and ASF
signifies the average of SF . The greater the values of these two
parameters are, the more susceptible the FSM is to fault attacks.

4.3 Vulnerability Analysis: Trojan Attack
In this section, we use the extracted ST G to analyze how suscep-

tible the FSM is to Trojan attacks. In our analysis, we consider the
don’t-care states which can be utilized to insert Trojans and gain
access to a protected state.

During the synthesis process if a don’t-care state is introduced
that has direct access to a protected state (DDCS) then it can cre-
ate a vulnerability in the FSM by allowing the attacker to utilize
this don’t-care state to insert a Trojan to gain access to the pro-
tected state. Let us consider the FSM of AES encryption module
shown in Fig. 4(b). The ‘Don’t-Care_1’ state is introduced by the
synthesis tool and this state has direct access to the protected state
‘Final Round’. An attacker needs only to add a small triggering
circuit to gain access to the ‘Don’t-Care_1’ and then go to ’Final
Round’ state from this state without changing the basic structure
of the FSM. An attacker can thus bypass the intermediate rounds of
AES encryption and get access to the key. From the attacker’s point
of view the existence of the ‘Don’t-Care_1’ state presents a unique
advantage to insert the Trojan with negligible area overhead. Also,
the don’t-care states are not part of verification and validation test-
ing; therefore these Trojans are likely to evade detection.

In our proposed AVFSM framework, Module T IA performs the
vulnerability analysis of Trojan attacks. It first reads the extracted
ST G and the don’t-care states (SD) and transitions reported by Mod-
ule FE and Module DCST I, and gets the set of protected states (P)
from the designer. Module T IA then searches for the Dangerous
Don’t-Care States (DDCS) and use the following metric vulnera-
bility factor of Trojan insertion (V FTro) to evaluate the vulnerability
of the FSM to Trojan insertion.

V FTro =
Total number o f s′

TotalTransition
,where,s′ ∈ DDCS (7)

For a secure design, this metric’s value should be zero. This
metric enables the designer to evaluate the FSM’s vulnerability to
possible Trojan insertion which were introduced by the synthesis
tool. Note that the proposed vulnerability analysis only consid-
ers Trojans which exploit a don’t-care state to perform the attack.
There are other possible approaches to insert Trojans in the FSM
(e.g. the specification of FSM itself can be maliciously modified)
and vulnerability analysis of these attacks are out of scope.

5. RESULTS
In this section, we first verify the correctness and scalability of

our FSM extraction technique (Module FE). We then demonstrate,
in details the applicability of the AVFSM framework by analyzing
the vulnerabilities in the FSMs of AES and RSA module.
5.1 Result of FSM Extraction Technique

We apply our proposed FSM extraction technique to a number of
FSM benchmark circuits from OpenCores [12]. These benchmark
circuits are described in RTL code. We use Synopsys Design Com-
piler to get the synthesized gate-level netlist along with the FSM
synthesis report. We then use Module FE to extract the ST G from
the synthesized gate-level netlist and use Module DCSTI to get the
don’t-care states and transitions. Table 2 demonstrates the details
of each benchmark.

Table 2: Results of proposed FSM extraction technique.

Benchmark State Input RTL RTL Don’t- Don’t-care CPU
FFs pins states transitions care states transitions time (s)

Multiplier 3 10 5 8 3 3 < 0.05
AES Encryption 3 10 5 11 3 6 < 0.05
RSA Encryption 3 9 7 9 1 1 < 0.05
Prep4 (One Hot) 16 26 16 40 38 41 < 0.9
SAP Computer 4 10 12 25 4 4 < 0.1

UART 3 20 5 13 3 3 < 0.05
MIPSR 2000 5 19 19 33 10 10 < 0.2

The ‘State FFs’ column in Table 2 represents the number of state
FFs used to implement the design. The ‘Input pins’ column rep-
resents the total number of input pins (PIPresentState, PIFNS, and
primary input pins of FSM) in the modified gate-level netlist for
which ATPG patterns are to be generated (see Section 4.1). The
‘RTL States’ and ‘RTL Transitions’ are obtained from the RTL
ST G which is generated using Altera’s Quartus tool. The ‘Don’t-
care states’ and ‘Don’t-care transitions’ are obtained by comparing
the ST G extracted from gate-level netlist and RTL ST G. Note that,
some don’t-care states have no transition to other states in the FSM
(e.g., the Don’t-care_3 state in Fig. 1(b)). These don’t-care states
are not extracted by our AVFSM framework and they are not listed
in the ‘Don’t-care states’ column. The ‘CPU time’ column shows
the time in seconds to generate all the ATPG patterns.

We first verify the efficacy of our proposed extraction technique
by comparing the extracted ST G with the RTL ST G. For all the
benchmark circuits except the AES encryption, we have found that
RT L ST G ⊆ extracted ST G. That is, all the transitions and states
in the RTL ST G are present in the extracted ST G. This observa-
tion verifies that our proposed FSM extraction technique can ac-
curately extract the ST G from the gate-level netlist. Only for the
FSM of AES encryption circuit one transition in the RTL ST G was
not present in the extracted ST G. One possible explanation for this
mismatch is that the missing RTL transition could be a redundant
condition and, therefore, was removed during the synthesis process.

The time required to generate the ATPG patterns depends on the
total number of states, number of ‘Input pins’ and how many ATPG
patterns are generated. Note that, we have used Tetramax’s n-detect
option to generate multiple patterns for a specific fault. We set
n = 1000 for Prep4 benchmark and n = 100 for all the other bench-
marks. The reason for using larger n value for the Prep4 is because
this benchmark is encoded in ‘One Hot’ style where the number of
state FFs equal to the number of states. Now, for all the benchmark
circuits, the time required to generate the ATPG patterns is less
than 1 second. The size of these benchmarks range from the small
scale controller circuit of a multiplier to a medium scale controller
circuit of a microprocessor (MIPSR 2000). By observing the time
required to generate ATPG patterns from Table 2, we can conclude
that our proposed FSM extraction technique is quite scalable.

It should be noted that the time shown in Table 2 does not incor-
porate the time needed to generate the modified netlist or ST G from
ATPG patterns. These operations include reading and creating text
files and therefore, does not require significant amount of time.

'000'

'001'

'010'

'011'

'100'

'101' '110' '111'
'100'

'000'

'001'

'010'

'011'

'101''110' '111'

Figure 5: Extracted ST G of (a) scheme 1 (left), (b) scheme 2 (right)

5.2 Case Study: I
We apply our proposed AVFSM framework to two implementa-

tions of AES encryption module’s controller circuit [12] and com-
pare each implementation’s vulnerability. The data path and the
FSM of the controller circuit of the AES encryption module is
shown in Fig. 1(a) and (b). As discussed in Section 3, the at-
tackers’ objective would be to get to the ‘Final Round’ without
going through the ‘Do Round’ stages in order to gain access to
the key. Therefore, for this FSM, the set of protected states is P =
{Final Round} and the set of authorized states is L = {Do Round}.

For this case study, we have used two different encoding schemes
for the FSM of the AES encryption module. We use { Wait Key,
Wait Data, Initial Round, Do Round, Final Round} = { 000, 001,
010, 011, 100} and { Wait Key, Wait Data, Initial Round, Do Round,
Final Roun} = { 001, 010, 011, 100, 000} for schemes 1 and 2,
respectively. We then synthesize each scheme with medium area
effort and apply our proposed AVFSM framework to analyze the
vulnerabilities of each implemented FSM.

The first part of our analysis is to produce the ST G from the gate-
level netlist. The extracted ST G of schemes 1 and 2 are shown in
Fig. 5(a) and (b), respectively. The red colored states and transi-
tions represent the don’t-care states and transitions; whereas the
black colored states and transitions represent the RTL states and
transitions. Both schemes operate identically under normal operat-
ing condition. However, as we will show in the following section,
one scheme is more vulnerable to faults and Trojan attacks than the
other.

For the fault injection vulnerability analysis, AVFSM analyzes
all transitions in the ST G and reports the transitions which are vul-
nerable to fault attacks. For scheme 2, AVFSM reports 12 V T
during which a fault can be injected to gain access to the pro-
tected state Final Round (000) or the Dangerous Don’t-Care States
(101,110,111). AVFSM then performs static timing analysis (STA)
to get the maximum path delay of each state FF and calculates
SF for each transition. Table 3 shows the report generated by the
AVFSM framework for three such V T . In the table, FaultState de-
notes the destination state for fault attack, and PathFs(i) denotes
the maximum delay path for the ith state FF.

Table 3: Reports of vulnerable transition, V T .
Transition FaultState PathViolated PathOK PathNoE f f ect SF

T (010,001) 000 PathFs(0) PathFs(1) PathFs(2) 0.12
T (100,001) 101 PathFs(2) PathFs(0) PathFs(1) 0.22
T (100,001) 000 PathFs(0) PathFs(2) PathFs(1) −0.02

AVFSM then removes the transitions from V T set whose SF < 0
because fault injection attack is not feasible during these transitions
in the implemented FSM (see subsection 4.2). After that AVFSM
calculates V FFI and V FTro for scheme 2.

For scheme 1, AVFSM analyzes all transitions in the extracted
ST G and reports that during the transitions T(101,000), T(110,000)
and T(111,000) a fault can be injected to access the protected state
Final Round (100). Because the parent state of the V T are don’t-
care states, AVFSM next searches for the transitions during which
fault can be injected to cause transition to state SD = {101,110,111}
and reports that there is no V T that can cause transition to these
states. Table 4 summarizes our analysis for schemes 1 and 2.

It is clear from the above analysis that the scheme 1 implementa-
tion of the AES encryption module is more resilient to fault attack
than scheme 2. Also, the existence of certain don’t-care in scheme
2 makes it more vulnerable to Trojan attacks than scheme 1.

Table 4: Vulnerability analysis for scheme 1 and scheme 2 of AES.
scheme 1 scheme 2

V FFI (0,0) (58.9%,0.15)
V FTro 0 0.18

5.3 Case Study: II
Here we use AVFSM framework to perform the vulnerability

analysis of a simplified FSM of an RSA encryption module imple-
menting the Montgomery ladder algorithm as shown in [6]. This
FSM is composed of 7 states, {Idle, Init, Load1, Load2, Multiply,
Square, Result}. Here, the attacker’s objective is to bypass the in-
termediate rounds of ‘Square’ and ‘Multiply’ states and access the
‘Result’ state to get either the key or premature result of RSA en-
cryption. Therefore, for this FSM, the set of protected states is
P = {Result} and set of authorized states is L = {Square}.

We have used the following two encoding schemes {000, 001,
010, 011, 100, 101, 110} and {001, 010, 011, 100, 101, 110, 000}
represented as scheme I and scheme II, respectively to implement
the FSM. For brevity, we do not show the extracted state transition
graph and detailed vulnerability analysis. The result reported by
our AVFSM framework is shown in Table 5.

Table 5: Vulnerability analysis for scheme I and scheme II of RSA.
V T V FFI V FTro

scheme I 1 (10%,0.66) 0
scheme II 3 (30%,0.15) 0.1

It can be observed from Table 5 that scheme I has 1 V T with high
SF while scheme II has 3 V T with comparatively low SF . In other
words, the first scheme has only 1 V T but an attacker can more
easily perform fault attack during this transition. On the other hand,
the second scheme has 3 V T but it is relatively difficult to inject a
fault during each transition. Therefore, both implementations are
vulnerable to fault attacks.

6. LOW-COST MITIGATION APPROACH
In this section we propose a modification of the FSM that will

mitigate fault injection and Trojan attacks. These attacks aim to ac-
cess a protected state from an unauthorized state (protected states
and authorized states have been defined in Section 2). In our pro-
posed approach the state FFs are replaced by ‘Programmable State
FFs’. We define ‘Programmable State FFs’ as the state FFs which
go to the Reset/Initial state if the protected state is tried to be ac-
cessed by any other state apart from the authorized states.

The operation of state FFs is as follows. During each state tran-
sition the next state logic bits appear at the input of the state FFs
and at the positive or negative edge of the clock signal the present
state bits (at the output of the state FFs) are updated to the next state
logic values. The concept of ‘Programmable State FFs’ is based on
decomposing the state FF into its Master-Slave latch configuration.
During each half clock cycle the next state values are stored in the
Master latches while the present state values are stored in the slave
latches. During this time period, we can check if the next state is
a protected state and if it is then verify whether the present state is
the authorized state. If this condition holds, then the transition to
the protected state is legitimate; otherwise it is not.

We propose an extension to the AVFSM framework which auto-
matically replaces the state FFs with ‘Programmable State FFs’ to
mitigate possible attacks against FSM. The work flow is as follows:
• Step1: AVFSM gets the set of protected state (P), authorized

state (L) and the Reset/Initial state from the designer.
• Step2: AVFSM uses the following behavioral condition to

check if the transition to protected state is legitimate or not.
sel = (next_state == P)&(present_state! = L) ? 1 : 0 (8)

• Step3: AVFSM synthesizes the behavioral condition to get
the circuit implementation of eqn. 8 .
• Step4: AVFSM places a MUX between each Master and

Slave latch pair. One input of the MUX comes from the Mas-
ter slave and other input is the logic bit of the Reset/Initial
state. The select pin of the MUX is controlled by the circuit
implementing eqn. 8.

The overall circuit of the ‘Programmable State FFs’ is shown in
Fig 6(a). The ‘blue’ marked latches are placed to resolve the meta-
stability problem. We simulated our proposed ‘Programmable State
FFs’ in Altera’s Quartus tool for the second encoding scheme for
the FSM of AES encryption (see Section 5.2). For this FSM the

Figure 6: Proposed modification of the FSM to mitigate fault injection and
Torjan attacks. (a) ‘Programmable State FFs’ circuit, (b) simulation result
of the proposed solution.

protected state is 000, authorized state is 100 and the initial state
(Wait Key) is 001. The simulation result is shown in Fig 6(b).
Under normal operation the ‘Programmable State FFs’ performs
identically as the traditional state FFs. At each positive edge of
the clock signal the next state value is loaded to the present state.
However, when the protected state (000) is tried to be accessed by
an unauthorized state (101), the FSM goes to Wait Key state (001)
instead of going to protected state (000) (see Fig 6(b)).

Note that ‘Programmable State FFs’ requires that the delay of the
combinational circuit implementing eqn. 8 is less than half of the
clock period. Also note that, this combinational circuit implements
a relatively simple condition and therefore, its area and delay over-
head is small compared to the whole design. The ‘Programmable
State FFs’ structure itself is resilient to fault injection because the
path between the Master and Slave latches is symmetric.
7. CONCLUSION

This is the first paper that systematically analyzes and evalu-
ates vulnerabilities in the FSM against fault injection and Trojan
attacks. Our proposed AVFSM framework allows the designer to
find security vulnerabilities in the FSM at an early design stage.
AVFSM also enables the designer to quantitatively compare the se-
curity of different implementations of the same design. If vulnera-
bilities exist in the design then our proposed mitigation technique
can be applied to make the FSM secure against such attacks.

8. REFERENCES
[1] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA,

DSS, and other systems" in Lecture Notes in Computer Science, 1996.
[2] P. C. Kocher, et al., “Differential Power Analysis" in CRYPTO, 1999.
[3] D. Hely et al., “Scan design and secure chip [secure IC testing]," in in Proc.

10th IEEE IOLTS, Jul. 2004.
[4] E. Biham and A. Shamir, “Differential fault analysis of secret key

cryptosystems," CRYPTO, 1997.
[5] R. Karri et al., "Trustworthy Hardware: Identifying and Classifying Hardware

Trojans", Computer, 2010.
[6] B. Sunar et al., “Sequential circuit design for embedded cryptographic

applications resilient to adversarial faults," IEEE Transactions on Computers,
2007.

[7] Z. Wang et al., "Robust FSMs for cryptographic devices resilient to strong
fault injection attacks," in On-Line Testing Symposium (IOLTS), 2010.

[8] C. Dunbar and G. Qu., "Designing Trusted Embedded Systems from Finite
State Machines," in ACM Trans. Embed. Comput. Syst., 2014.

[9] H. Salmani and M. Tehranipoor, "Analyzing circuit vulnerability to hardware
Trojan insertion at the behavioral level," in Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), 2013.

[10] T. Schneider and A. Moradi, "Leakage Assessment Methodology - a clear
roadmap for side-channel evaluations," in CHES 2015.

[11] B. Yuce et al., "TVVF: Estimating the vulnerability of hardware
cryptosystems against timing violation attacks," in Hardware Oriented
Security and Trust (HOST), 2015.

[12] http://opencores.org/.
[13] L. Yuan et al., “An fsm reengineering approach to sequential circuit synthesis

by state splitting," Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 2008.

[14] Y. Shi et al., “A highly efficient method for extracting fsms from flattened
gate-level netlist," in Circuits and Systems (ISCAS), 2010.

[15] L. Zussa et al., “Investigation of timing constraints violation as a fault
injection means", in DCIS 2012.

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

