
Pre-Silicon Security Verification and Validation: A Formal
Perspective

Xiaolong Guo
University of Central Florida

Orlando, FL 32816
guoxiaolong@knights.ucf.edu

Raj Gautam Dutta
University of Central Florida

Orlando, FL 32816
rajgautamdutta@knights.ucf.edu

Yier Jin
University of Central Florida

Orlando, FL 32816
yier.jin@eecs.ucf.edu

Farimah Farahmandi
University of Florida

Gainesville, FL 32611
farimah@cise.ufl.edu

Prabhat Mishra
University of Florida

Gainesville, FL 32611
prabhat@cise.ufl.edu

Invited

ABSTRACT
Reusable hardware Intellectual Property (IP) based System-
on-Chip (SoC) design has emerged as a pervasive design
practice in the industry today. The possibility of hard-
ware Trojans and/or design backdoors hiding in the IP cores
has raised security concerns. As existing functional testing
methods fall short in detecting unspecified (often malicious)
logic, formal methods have emerged as an alternative for
validation of trustworthiness of IP cores. Toward this direc-
tion, we discuss two main categories of formal methods used
in hardware trust evaluation: theorem proving and equiva-
lence checking. Specifically, proof-carrying hardware (PCH)
and its applications are introduced in detail, in which we
demonstrate the use of theorem proving methods for pro-
viding high-level protection of IP cores. We also outline
the use of symbolic algebra in equivalence checking, to en-
sure that the hardware implementation is equivalent to its
design specification, thus leaving little space for malicious
logic insertion.

1. INTRODUCTION
The impact of malicious logic and design flaws in IP cores

threatens to ruin the credibility of third-party vendors and
places unnecessary security risks on the IP customers and
end users. Existence of a malicious IP core invalidates the
applicability of many of the previously proposed methods
for Hardware Trojan detection [1, 6, 19, 23, 31, 32]. Most of
the existing methods rely on golden models to generate the
fingerprints and compare them with those measured from
circuit-under-test using certain data analysis methods.

To counter the threat of untrusted third-party resources,
pre-silicon trust evaluation approaches have been proposed
recently [2, 16, 36]. Most of these methods try to trigger
malicious logic by enhancing functional testing with extra

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’15, June 07 - 11, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3520-1/15/06 ...$15.00.
http://dx.doi.org/10.1145/2744769.2747939

test vectors. Authors in [36] proposed a method to gen-
erate “Trojan Vectors” into the testing patterns, hoping to
activate the Hardware Trojans during the functional test-
ing. In order to identify suspicious circuitry, unused circuit
identification (UCI) [16] method analyzed the RTL code to
find lines of code that are never used. However, these meth-
ods assume that the attacker uses rarely-occurring events as
Trojan triggers. Using “less-rare” events as trigger will void
these approaches. This was demonstrated in [35], where
Hardware Trojans were designed to defeat UCI.

Admitting the limitations of enhanced functional testing
methods, researchers started looking into formal solutions.
Although at its early stage, formal methods have already
shown their benefits over testing methods in exhaustive se-
curity verification [18, 21, 25, 39]. A multi-stage approach,
which included assertion based verification, code coverage
analysis, redundant circuit removal, equivalence analysis,
and use of sequential Automatic Test Pattern Generation
(ATPG) was adopted in [39] to identify suspicious signals
for detecting Hardware Trojans. This approach was demon-
strated on a RS232 circuit and the efficiency of the approach
in detecting Trojan signals ranged between 67.7% and 100%.
In [18, 21, 25], the PCH framework was used to verify secu-
rity properties on soft IP cores. Supported by the Coq proof
assistant [17], formal security properties can be formalized
and proved to ensure the trustworthiness of IP cores. In this
survey, we review the existing formal verification methods
for soft IP cores with specific focuses on theorem proving
and equivalence checking.

The rest of the paper is organized as follows: Section 2
discusses the theorem proving approach for hardware trust
evaluation. In this section, the PCH framework is intro-
duced as well as its applicability in verifying synthesizable
register-transfer level (RTL) code and netlist of soft IP cores.
Section 3 discusses the existing equivalence checking meth-
ods for ensuring trustworthiness of soft IP cores. Finally,
Section 4 concludes the paper.

2. THEOREM PROVING FOR VALIDATION
OF HARDWARE TRUST

Theorem provers are used to prove or disprove properties
of systems expressed as logical statements. Since 1960s, sev-
eral automated and interactive theorem provers have been
developed and used for proving properties of hardware and

software systems. However, verifying large and complex sys-
tems using theorem provers require excessive effort and time.
Despite these limitations, theorem provers have currently
drawn a lot of interest in verification of security properties
on hardware. Among all the formal methods, they have
emerged as the most prominent solution for providing high
level protection of the underlying designs. In this section,
we introduce the PCH framework, which uses an interactive
theorem prover for verifying security properties on soft IP
cores.

2.1 Proof-Carrying Hardware Framework
Proof-Carrying Hardware is an approach for ensuring trust-

worthiness of hardware [9, 10, 24, 25]. The PCH method is
inspired from the proof-carrying code (PCC), which was pro-
posed by G. Necula [30]. Using the PCC mechanism, un-
trusted software developers/vendors certify their software
code. During the certification process, software vendor de-
velops safety proof for the safety policies provided by soft-
ware customers. The vendor then provides the user with
a PCC binary file, which includes the formal proof of the
safety properties encoded with the executable code of the
software. The customer becomes assured of the safety of
the software code by quickly validating the PCC binary file
in a proof checker. Efficiency of this approach in reducing
validation time at the customer end led to its adoption in
different applications.

Following the concept of PCC, authors in [9–12] proposed
the Proof-Carrying Hardware (PCH) framework for dynam-
ically reconfigurable hardware platforms. In the PCH frame-
work, authors used runtime combinational equivalence check-
ing (CEC) for verifying equivalence between the design spec-
ification and the design implementation. A boolean satisfi-
ability (SAT) solver was used to generate resolution proof
for unsatisfiability of the combinational miter circuit, repre-
sented in a conjunctive normal form (CNF). The proof traces
were combined with the bitstream into a proof-carrying bit-
stream by the vendor and given to the customer for valida-
tion. However, the approach did not consider exchange of a
set of security properties between the customer and the ven-
dor. Rather it considers safety policy, which included agree-
ments on a specific bitstream format, on a CNF to represent
combinational functions, and the propositional calculus for
proof construction and verification.

2.2 Proof-Carrying Based RTL Verification
In [24, 25], another PCH framework was proposed, which

overcame the limitations of the previous framework and ex-
panded it for verification of security properties on soft IP
cores. The new PCH framework is dedicated for security
properties verification on synthesizable register-transfer level
(RTL) IP cores. In the framework, Hoare-logic style reason-
ing is used to prove the correctness of the RTL code and
implementation was carried out using the Coq proof assis-
tant [17]. As Coq supports automatic proof checking, it can
help IP customers to validate proof of security properties
with minimum effort. Moreover, usage of the Coq platform
by both IP vendors and IP consumers ensures that same
deductive rules could be used for validating the proof. How-
ever, Coq does not recognize commercial hardware descrip-
tion languages (HDLs) and security properties expressed in
a natural language. To solve this problem, semantic trans-
lation of HDLs and informal security specifications to calcu-

Figure 1: Working process of the PCH framework

lus of inductive construction (CIC) was done. Based on this
PCH framework, a new trusted IP acquisition and delivery
protocol was proposed (See Figure 1), in which IP consumers
provided both functional specifications and a set of security
properties to IP vendors. IP vendors then developed the
HDL code based on the functional specifications. The HDL
code and security properties were then translated to CIC.
Subsequently, proofs were constructed for security theorems
and the transformed HDL code. The HDL code and proof
for security properties were combined into a trusted bundle
and delivered to the consumer. Upon receiving the trusted
bundle, IP consumers first generate the formal representa-
tion of the design and security properties in CIC. The trans-
lated code, combined with formal theorems and proofs were
quickly validated using the proof checker in Coq platform.

Within the PCH framework defined in [25], the most im-
portant component is the set of security properties. A com-
plete set of properties can ensure trustworthiness of the de-
sign by detecting malicious logic if present in the IP core.
As different soft IP cores often share similar security proper-
ties, an expandable centralized repository of security prop-
erties with theorem-proof pairs will be a desirable solution
for reducing the verification effort and protect the design
from different types of hardware Trojan attacks. Any hard-
ware designer will be able to pick a set of security properties
from the property library rather than developing properties
from scratch. The selected set of properties will be able to
render many modes of attack significantly difficult to imple-
ment, thereby ensuring the trustworthiness of the delivered
IP cores.

As a first step toward building such a property library,
data secrecy properties were considered [20,21]. These prop-
erties help in tracking the internal information flow. Sub-
sequently, the PCH framework formally prove that no sen-
sitive information is leaked through the primary output or
the Trojan side channels. The proof-carrying based static
information flow scheme was demonstrated in [20]. In this
method, each signal of the formal circuit had two values:
logic value and signal sensitivity. The semantics of the for-
mal circuit representation was updated to support both the
logic signal propagation and signal sensitivity operation. Ac-
cordingly, a new formal model was developed for assign-
ing appropriate sensitivity tags to each signals. With this
framework, if proofs can be successfully constructed for the
pre-defined data secrecy property, IP consumers can trust

that the delivered IP cores will not leak sensitive infor-
mation through primary outputs. This static scheme has
proven effective in detecting data leakage caused by hard-
ware Trojans and/or design faults and require less effort
in constructing the proof. However, the static scheme suf-
fers from the limitation that it cannot be directly imple-
mented on multi-stage designs and can only check circuit
trustworthiness statically. To overcome the shortcoming of
the static scheme and still achieve high level protection, a
dynamic information assurance scheme was developed. The
new scheme supports various levels of circuit architectures,
ranging from low-complexity small-scale designs to large-
scale deeply-pipelined design. Similar to the static scheme,
the dynamic scheme also focuses on circuits with sensitive
information, such as cryptographic designs.

Within the dynamic scheme, all signals are assigned val-
ues indicating their sensitivity levels. Based on the original
values of signals and the update rules defined by the sig-
nal sensitivity transition model, values of these signals are
updated after each clock cycle. As the sensitivities of all cir-
cuit signals are managed in a sensitivity list, two sensitivity
lists are of interest for data secrecy protection: the initial
sensitivity list and the stable sensitivity list. The initial sen-
sitivity list reflects the circuit status after initialization or
powered-on mode, when only some of the input signals con-
tain sensitive information such as plaintext, encryption keys,
etc. The stable sensitivity list, on the other hand, indicates
the circuit status when all internal/output signals have fixed
sensitivity levels.

Figure 2: Trusted bundle preparation by IP vendors in the
dynamic information assurance scheme

Figure 2 illustrates the preparation process of the trusted
bundle defined by the dynamic information assurance scheme.
A new structural Coq formal logic and a signal sensitiv-
ity transition model are developed for converting the HDL
code to Coq representatives. Using the functional specifica-
tions, the IP vendor designs the HDL code and then uses the
structural Coq formal logic and the signal sensitivity tran-
sition model to convert the HDL code into the language of
Coq. The IP vendor also translates the agreed-upon data
secrecy properties from natural language to property gener-
ation functions, which then helps in generating formal the-
orems.

The data secrecy property verification procedure performed
by the IP consumer in the dynamic scheme is shown in Fig-
ure 3. In the first step, IP consumers check the contents of
the initial signal sensitivity list and the stable signal sensitiv-
ity list. These lists represent the circuit’s initial secrecy sta-
tus and stabilized status. Validity of the initial list is checked
to ensure that sensitivity levels are appropriately assigned

to all input/output/internal signals. The stable sensitivity
list contains complete information of the distribution of sen-
sitive information across the whole circuit. Evaluating this
list helps to detect hardware Trojans, which may illegally
propagate sensitive information to primary outputs of the
circuit.

After both the signal sensitivity lists pass the initial step,
IP consumers proceed to the next step of automatic proof
checking. A “PASS” output from the checker provides evi-
dence that the HDL code do not contain any malicious chan-
nels. However, a “FAIL” results in a warning that some of
the data secrecy properties are breached in the delivered
IP cores. The PCH framework has been applied in crypto-
graphic circuits such as DES, AES [20,21].

Figure 3: Data secrecy property verification by IP con-
sumers in dynamic information assurance scheme

2.3 Proof-Carrying Based Netlist Verification
Besides the RTL code verification, the proof-carrying based

information assurance scheme was extended to support gate
level circuit netlist [18]. By leveraging the new gate-level
framework, the authors in [18] formally analyzed the se-
curity of design-for-test (DFT) scan chains, the industrial
standard testing method, and formally proved that a cir-
cuit with scan chain can violate data secrecy property. Al-
though security concerns caused by DFT scan chains have
been under investigation for decades, with various attack
and defense methods being developed [8,29,33,34,37,38], it
is the first time it has been formally proved that the scan
chain inserted designs are vulnerable (Note that RTL veri-
fication methods can rarely touch scan chains because scan
chains are inserted in the netlist). The same framework was
also applied in built-in-self-test (BIST) structure to prove
that BIST structure can also leak internal sensitive infor-
mation [18].

3. EQUIVALENCE CHECKING FOR HARD-
WARE TRUST VALIDATION

Orthogonal to the theorem prover based approaches, an-
other promising approach is equivalence checking to ensure
that the specification and implementation are equivalent.
Figure 4 shows a traditional approach for performing equiv-
alence checking using SAT solvers. If the specification and
implementation are equivalent, the output of the “xor” gate
should be always zero (false). If the output becomes true for
any input sequence, it implies that the specification and the
implementation are producing different outputs for the same
input sequence. Therefore, if we construct CNF clauses of
the input cone of F , we can use a SAT solver to perform

equivalence checking. If the SAT solver finds a satisfiable
assignment, the specification and implementation are not
equivalent. Traditional equivalence checking techniques can
lead to state space explosion when large IP blocks are in-
volved with significantly different specification and imple-
mentation. Similarly, traditional equivalence checking ap-
proaches fail for complex arithmetic circuits with larger bit-
widths.

Figure 4: Equivalence Checking using SAT Solvers

A promising direction to address the state space explo-
sion problem in verification of arithmetic circuits is to em-
ploy equivalence checking using computer symbolic algebra.
Arithmetic circuits constitute a significant portion of datap-
ath in signal processing, cryptography, multimedia applica-
tions, error root causing codes, etc. In most of them, arith-
metic circuits have a custom structure and can be very large
so the chances of potential malfunction is high. These bugs
may cause unwanted operations as well as security problems
like leakage of secret key [3]. Thus, verification of arithmetic
circuits is very important.

Application of symbolic algebra for verification of combi-
national multipliers that support Galois field F2k computa-
tion (with function P(x) for field construction) is presented
in [26]. The primary goal is to check equivalence between
the specification polynomial f (with coefficient in F2k) and
gate level implementation C. The specification of arithmetic
circuit and implementation are formulated as polynomials
constructing a multivariate ring with coefficients from F2k .
This method uses Gröbner basis and Strong Nullstellent over
Galois field to formulate the verification problem as an ideal
membership testing of polynomial f in the ideal constructed
by circuit polynomials (ideal I). Ideal I can have several
generators, one of these generators is called Gröbner basis.
First, we briefly describe Gröbner basis theory [7]. Next, we
present application of Gröbner basis theory for verification
of arithmetic circuits.

LetM = x1
α1x2

α2 ...xn
αn be a monomial and f = C1M1+

C2M2+ ...+CtMt be a polynomial with {c1, c2, ..., ct} as co-
efficients and M1 > M2 > ... > Mt. Monomial lm(f) = M1

is called leading monomial lt(f) = C1M1 is called leading
term of polynomial f. Let K be a computable field and
K[x1, x2, ..., xn] be a polynomial ring in n variables. Then <

f1, f2, ..., fs >= {
n∑

i=1

hifi : h1, h2, ..., hs ∈ K[x1, x2, ..., xn]}
is an ideal I. The set {f1, f2, .., fs} is called generator or
basis of ideal I. If V (I) shows the affine variety (set of all
solution of f1 = F2 = ... = fs = 0) of ideal I, I(V) = {fi ∈
K[x1, x2, ..., xn] : ∀v ∈ V (I), fi(v) = 0}. Polynomial fi is
a member of I(V) if it vanishes on V (I). Gröbner basis is
one of the generators of every ideal I (when I is other than
zero) that has a specific characteristic to answer member-
ship problem of an arbitrary polynomial f in ideal I. The
set G = {g1, g2, ..., gt} is called Gröbner basis of ideal I, if
∀fi ∈ I, ∃gj ∈ G : lm(gj)|lm(fi).

The Gröbner basis solves the membership testing prob-

lem of an ideal using sequential divisions or reduction. The
reduction operation can be formulated as follows. Polyno-
mial fi can be reducible by polynomial gj if lt(fi) = C1M1

(which is non-zero) is divisible by lt(gi) and r is the remain-

der (r = fi − lt(fi)
lt(gj)

.gj). It can be denoted by fi
gj−→ r.

Similarly, fi can be reducible with respect to set G and it

can be represented by fi
G−→+ r. The set G is Gröbner basis

ideal I, if ∀f ∈ I, fi
G−→+ 0. Gröbner basis can be computed

using Buchburger algorithm [4]. However, Buchberger al-
gorithm is computationally intensive and it may effect the
performance drastically. It has been shown in [5] that if
every pair (fi, fj) that belongs to set F = {f1, f2, ..., fs}
(generator of ideal I) has a relatively prime leading mono-
mials (lm(fi).lm(fj) = LCM(lm(fi).lm(fj))) with respect
to order >, the set F is also Gröbner basis of ideal I. Based
on these observations, efficient equivalence checking between
specification of an arithmetic circuit and its implementation
can be performed as shown in Figure 5. The major compu-
tation steps in Figure 5 are outlined below:

• Assuming a computational field K and a polynomial
ringK[x1, x2, ..., xn] (note that variables {x1, x2, ..., xn}
are subset of signals in the gate level implementa-
tion), a polynomial fspec ∈ K[x1, x2, ..., xn] represent-
ing specification of the arithmetic circuit can be de-
rived.

• Map the implementation of arithmetic circuit to a set
of polynomials that belongs to K[x1, x2, ..., xn]. The
set F generates an ideal I. Note that according to the
field K, some vanishing polynomials that constructs
ideal I0 may be considered as well.

• Derive an order > in a way that leading monomials
of every pair (fi, fj) are relatively prime. Thus, the
generator set F is also Gröbner basis G = F . As the
combinational arithmetic circuits are acyclic, the topo-
logical order of the signals in the gate level implemen-
tation can be used.

• The final step is reduction of fspec with respect to
Gröbner basis G and order >. In other words, the ver-

ification problem is formulated as fspec
G−→+ r. The

gate level circuit C has correctly implemented speci-
fication fspec, if the remainder r is equal to 0. The
non-zero remainder implies a bug or Trojan in the im-
plementation.

Galois field arithmetic computation can be seen in Barrett
reduction [28], Mastrovito multiplication and Montgomery
reduction [22] which are critical part of cryptosystems. So
verification of them in an efficient way is really important.
In order to apply the method of Figure 5 for verification of
Galios field arithmetic circuits, Strong Nullstellensatz over
Galois Fields is used. Galois field is not an algebraically
closed field, so its closure should be used. Strong Nullstel-
lensatz helps to construct a radical ideal in a way such that
I(V

F2
k) = I + I0. Ideal I0 is constructed by using van-

ishing polynomials x2k

i − xi by considering the fact that

∀x2k

i ∈ F2k : x2k

i − xi = 0. As a result, the Gröbner ba-
sis theory can be applied on Galois field arithmetic circuits.
The method in [26] has extracted circuit polynomials by
converting each gate to a polynomial and SINGULAR [15]

Figure 5: Equivalence checking flow.

has been used to do the fspec
G−→+ r computations. Using

this method, the verification of Galois field arithmetic cir-
cuits like Mastrovito multipliers with up to 163 bits can be
done in few hours. Some extensions of this method has been
proposed in [27]. The cost of fspec

G−→+ r computation has
been improved by mapping the computation on a matrix
representing the verification problem, and the computation
is performed using Gaussian elimination.

The Gröbner basis theory has been used to verify arith-
metic circuits over ring Z[x1, x2, . . . , xn]/2

N in [14]. Instead
of mapping each gate to a polynomial, the repetitive compo-
nents of the circuit are extracted and the whole component
is represented using one polynomial (since arithmetic cir-
cuit over ring Z[x1, x2, . . . , xn]/2

N contain carry chain, the
number of polynomials can be very large). Therefore, the
number of circuit polynomials are decreased. In order to

expedite the fspec
G−→+ r computation, the polynomials are

represented by Horner Expantion Diagrams. The reduction
computation is implemented by sequential division. The ver-
ification of arithmetic circuit over ring Z[x1, x2, . . . , xn]/2

N

up to 128 bit can be efficiently performed using this method.
An extension of this method has been presented in [13] that
is able to significantly reduce the number of polynomials by
finding fanout-free regions and representing the whole re-
gion by one single polynomial. Similar to [27], the reduction
of specification polynomial with respect to Gröbner basis
polynomials is performed by Gaussian elimination resulting
in verification time of few minutes. In all of these meth-
ods, when the remainder r is non-zero, it shows that the
specification is not exactly equivalent with the gate level
implementation. Thus, the non-zero remainder can be ana-
lyzed to identify the hidden malfunctions or Trojans in the
system.

4. CONCLUSION
Growing reliance on hardware IPs, often gathered from

untrusted third-party vendors, severely affects the security
and trustworthiness of SoC computing platforms. A ma-
jor concern with the hardware IPs acquired from external
sources is that they may come with deliberate malicious im-
plants to incorporate undesired functionality, undocumented
test/debug interface working as hidden backdoor, or other
integrity issues. SoC integrators typically tend to treat these
IPs as black box and rely on the IP vendors on their struc-

tural/functional integrity. As various reports suggest that
such a reliance can compromise the hardware security and
trust. This paper surveyed existing formal methods for
hardware IP trust validation: theorem proving and equiva-
lence checking. We presented theorem proving approaches
using proof-carrying hardware to enable high-level protec-
tion of IP cores. We also outlined equivalence checking tech-
niques to guarantee that there are no malicious implants in
the IP blocks by ensuring that the IP implementation faith-
fully represents the IP specification - nothing more, nothing
less. We believe that the existing methods are promising
but a lot more research effort is required to enable trusted
SoC design using potentially untrusted components.

5. ACKNOWLEDGEMENT
This work was supported in part by the National Science

Foundation grants (CCF-1218629, CNS-1319105 and CNS-
1441667) and Semiconductor Research Corporation grant
(2014-TS-2554).

6. REFERENCES
[1] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi,

and B. Sunar. Trojan detection using IC
fingerprinting. In IEEE Symposium on Security and
Privacy, pages 296–310, 2007.

[2] M. Banga and M. Hsiao. Trusted RTL: Trojan
detection methodology in pre-silicon designs. In IEEE
International Symposium on Hardware-Oriented
Security and Trust (HOST), pages 56–59, 2010.

[3] E. Biham, Y. Carmeli, and A. Shamir. Bug attacks.
Advances in Cryptology, page 221–240, 2008.

[4] B. Buchberger. Ein algorithmus zum auffinden der
basiselemente des restklassenringes nach einem
nulldimensionalen polynomideal. University of
Innsbruck, 1965.

[5] B. Buchberger. A criterion for detecting unnecessary
reductions in the construction of a groebner bases. In
EUROSAM, 1979.

[6] R. Chakraborty, F. Wolff, S. Paul, C. Papachristou,
and S. Bhunia. MERO: A statistical approach for
hardware Trojan detection. In Cryptographic
Hardware and Embedded Systems, pages 396–410,
2009.

[7] D. Cox, J. little, and D. O’shea. Ideal, varieties and
algorithm: An introduction to computational algebraic
geometry and commutative algebra. In Springer, 2007.

[8] J. Da Rolt, G. Di Natale, M. L. Flottes, and
B. Rouzeyre. Are advanced dft structures sufficient for
preventing scan-attacks? In VLSI Test Symposium
(VTS), pages 246–251, 2012.

[9] S. Drzevitzky. Proof-carrying hardware: Runtime
formal verification for secure dynamic reconfiguration.
In International Conference on Field Programmable
Logic and Applications, pages 255–258, 2010.

[10] S. Drzevitzky, U. Kastens, and M. Platzner.
Proof-carrying hardware: Towards runtime verification
of reconfigurable modules. In ReConFig, pages
189–194, 2009.

[11] S. Drzevitzky, U. Kastens, and M. Platzner.
Proof-carrying hardware: Concept and prototype tool
flow for online verification. International Journal of
Reconfigurable Computing, vol. 2010, 2010.

[12] S. Drzevitzky and M. Platzner. Achieving hardware
security for reconfigurable systems on chip by a
proof-carrying code approach. In 6th International
Workshop on Reconfigurable Communication-centric
Systems-on-Chip, pages 1–8, 2011.

[13] F. Farahmandi and B. Alizadeh. Groebner basis based
formal verification of large arithmetic circuits using
gaussian elimination and cone-based polynomial
extraction. In Microprocessors and Microsystems -
Embedded Hardware Design, pages 83–96, 2015.

[14] F. Farahmandi, B. Alizadeh, and Z.Navabi. Effective
combination of algebraic techniques and decision
diagrams to formally verify large arithmetic circuits.
In IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), pages 338–343, 2014.

[15] P. G. S. Greuel, G.-M. 2012. SINGULAR 3.1.3 A
Computer Algebra System for Polynomial
Computations. Centre for Computer Algebra.
http://www.singular.uni-kl.de.

[16] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin,
and J. M. Smith. Overcoming an untrusted computing
base: Detecting and removing malicious hardware
automatically. In Proceedings of IEEE Symposium on
Security and Privacy, pages 159–172, 2010.

[17] INRIA. The coq proof assistant, 2010.
http://coq.inria.fr/.

[18] Y. Jin. Design-for-security vs. design-for-testability: A
case study on dft chain in cryptographic circuits. In
IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), 2014.

[19] Y. Jin and Y. Makris. Hardware Trojan detection
using path delay fingerprint. In IEEE International
Workshop on Hardware-Oriented Security and Trust,
pages 51–57, 2008.

[20] Y. Jin and Y. Makris. Proof carrying-based
information flow tracking for data secrecy protection
and hardware trust. In VLSI Test Symposium (VTS),
pages 252–257, 2012.

[21] Y. Jin, B. Yang, and Y. Makris. Cycle-accurate
information assurance by proof-carrying based signal
sensitivity tracing. In IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST),
pages 99–106, 2013.

[22] C. Koc and T. Acar. Montgomery multiplication in
GF (2k). In Designs, Codes and Cryptography,
volume 14, pages 57–69, 1998.

[23] C. Lamech, R. Rad, M. Tehranipoor, and
J. Plusquellic. An experimental analysis of power and
delay signal-to-noise requirements for detecting
Trojans and methods for achieving the required
detection sensitivities. IEEE Trans. on Information
Forensics and Security, 6(3):1170–1179, 2011.

[24] E. Love, Y. Jin, and Y. Makris. Enhancing security
via provably trustworthy hardware intellectual
property. In Hardware-Oriented Security and Trust
(HOST), 2011 IEEE International Symposium on,
pages 12–17, 2011.

[25] E. Love, Y. Jin, and Y. Makris. Proof-carrying
hardware intellectual property: A pathway to trusted
module acquisition. IEEE Transactions on
Information Forensics and Security, 7(1):25–40, 2012.

[26] J. Lv, P. Kalla, and F. Enescu. Efficient groebner

basis reductions for formal verification of galois field
multipliers. In Proceedings Design, Automation and
Test in Europe Conf. (DATE), pages 899–904, 2012.

[27] J. Lv, P. Kalla, and F. Enescu. Efficient groebner
basis reductions for formal verification of galois field
arithmetic circuits. In IEEE Transactions on CAD
(TCAD), volume 32, pages 1409 – 1420, 2013.

[28] a. J. F. M. Knežević, and K. Sakiyama and
I. Verbauwhed. Modular reduction in GF (2n) without
pre-computational phase. In Proceedings of the
International Workshop on Arithmetic of Finite
Fields, pages 77–87, 2008.

[29] R. Nara, N. Togawa, M. Yanagisawa, and T. Ohtsuki.
Scan-based attack against elliptic curve cryptosystems.
In Proceedings of the 2010 Asia and South Pacific
Design Automation Conference, pages 407–412, 2010.

[30] G. C. Necula. Proof-carrying code. In POPL ’97:
Proceedings of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 106–119, 1997.

[31] R. Rad, J. Plusquellic, and M. Tehranipoor.
Sensitivity analysis to hardware Trojans using power
supply transient signals. In HOST, pages 3–7, 2008.

[32] R. M. Rad, X. Wang, M. Tehranipoor, and
J. Plusquellic. Power supply signal calibration
techniques for improving detection resolution to
hardware Trojans. In ICCAD, pages 632–639, 2008.

[33] J. Rolt, A. Das, G. Natale, M.-L. Flottes,
B. Rouzeyre, and I. Verbauwhede. A new scan attack
on rsa in presence of industrial countermeasures. In
W. Schindler and S. Huss, editors, Constructive
Side-Channel Analysis and Secure Design, volume
7275 of Lecture Notes in Computer Science, pages
89–104. Springer Berlin Heidelberg, 2012.

[34] G. Sengar, D. Mukhopadhyay, and D. Chowdhury.
Secured flipped scan-chain model for
crypto-architecture. Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions
on, 26(11):2080–2084, 2007.

[35] C. Sturton, M. Hicks, D. Wagner, and S. King.
Defeating UCI: Building stealthy and malicious
hardware. In 2011 IEEE Symposium on Security and
Privacy (SP), pages 64–77, 2011.

[36] F. Wolff, C. Papachristou, S. Bhunia, and R. S.
Chakraborty. Towards Trojan-free trusted ICs:
Problem analysis and detection scheme. In DATE,
pages 1362–1365, 2008.

[37] B. Yang, K. Wu, and R. Karri. Scan based side
channel attack on dedicated hardware
implementations of data encryption standard. In ITC,
pages 339–344, 2004.

[38] B. Yang, K. Wu, and R. Karri. Secure scan: A
design-for-test architecture for crypto chips. IEEE
Transactions on CAD, 25(10):2287–2293, 2006.

[39] X. Zhang and M. Tehranipoor. Case study: Detecting
hardware trojans in third-party digital ip cores. In
HOST, pages 67–70, 2011.

