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ABSTRACT
Despite the increasing popularity of the smart home con-
cept, such a technology is vulnerable to various security
threats such as pricing cyberattacks. There are some tech-
nical advances in developing detection and defense frame-
works against those pricing cyberattacks. However, none
of them considers the impact of net metering, which allows
the customers to sell the excessively generated renewable en-
ergy back to the grid. At a superficial glance, net metering
seems to be irrelevant to the cybersecurity, while this paper
demonstrates that its implication is actually profound.

In this paper, we propose to analyze the impact of the net
metering technology on the smart home pricing cyberattack
detection. Net metering changes the grid energy demand,
which is considered by the utility when designing the guide-
line price. Thus, cyberattack detection is compromised if
this impact is not considered. It motivates us to develop a
new smart home pricing cyberattack detection framework
which judiciously integrates the net metering technology
with the short/long term detection. The simulation results
demonstrate that our new framework can significantly im-
prove the detection accuracy from 65.95% to 95.14% com-
pared to the state-of-art detection technique.
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1. INTRODUCTION
Smart home has gained popularity in recent years due to

the automatic control of household activities, energy effi-
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ciency and low economical cost. Taking advantage of the
advanced metering infrastructure (AMI), the smart home
system receives the utility pricing information using smart
meters. Subsequently, smart home scheduling techniques
are applied to schedule operations of home appliances for
shifting the heavy energy load off the peak pricing hours [6].
There are two pricing schemes in this process. That is, real
time pricing is used to bill the customers based on the energy
usage during the past time window, and guideline pricing,
in which the utility predicts the future electricity price, is
used to facilitate the smart home scheduling [8]. This helps
balance the energy load in the power grid.

In addition to smart home scheduling, home level dis-
tributed generation (DG) such as PV panels plays an im-
portant role in the smart home system. It supplies energy
to customers directly using the local resource, mitigating the
burden of power generation and transmission. In addition,
when excessive renewable energy is generated, customers are
encouraged to sell it back to the power grid to be rewarded,
which is known as net metering. In fact, net metering has
already been implemented in 27 states in U.S. [1, 2]. The
reward for selling energy depends on the real time electricity
price as well as the electricity market regulations that vary
in different states. Furthermore, with a rechargeable bat-
tery, a customer can keep the energy for future use [5]. It is
clear that the above mechanisms impact the energy demand
from grid, which makes its prediction difficult.

On the other hand, the smart home system is vulnerable
to cyberattacks. For example, a malicious hacker can attack
smart meters through manipulating the received guideline
prices. This can mislead the smart home scheduling solu-
tions and further impact the energy load of a community.
For this, two closely related pricing cyberattacks are pro-
posed in [8] and [7], which increase the customer electric-
ity bill and the peak energy usage. The single event and
long term defense techniques are then developed based on
support vector regression (SVR) and partially observable
Markov decision process (POMDP). However, none of the
previous works consider the impact of net metering which
changes the energy demand from grid and thus the utility
pricing. Since the detection techniques rely on the prediction
of utility pricing, ignoring net metering impact can signifi-
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cantly compromise the detection. This paper first analyzes
such impact and then develops a net metering aware energy
load prediction which is further integrated into the cyberat-
tack detection. Our contributions are listed as follows.

• A net metering aware energy load prediction technique
is proposed based on the cross entropy optimization.

• A smart home pricing cyberattack detection technique
considering the net metering impact is proposed, which
is the first such work in the problem context. This
technique is constructed based on the partially observ-
able Markov decision process smart home cyberattack
detection framework developed in [7].

• The simulation results demonstrate that our new frame-
work can significantly improve the detection accuracy
from 65.95% to 95.14% compared to the state of art
detection technique.

2. PRELIMINARIES
Consider a community consisting ofN customers. Refer to

Figure 1. Each customer is supplied by energy from both the
grid and the home level PV panel. Smart home technique is
deployed such that each customer n ∈ N has a set of home
appliances An to be scheduled by a smart controller. The
customers keep receiving the guideline price from the utility,
and each customer schedules the energy consumption in the
next 24 hours which is divided into H time slots.

Net Meter 

PV Panel 

Battery 

Figure 1: The system model.

2.1 Energy Consumption
Each customer uses smart home scheduling technique to

schedule the home appliances. For home appliance m ∈ An,
denoted by Xm the set of power levels. At each time slot,
the customer n chooses a power level xhm ∈ Xm for the home
appliance m subject to the following constraints. (1) The
total energy consumption of home appliance m over the time
horizon is equal to the required energy consumption of the
specified task Em such that

∑H
h=1 x

h
me

h
m = Em, where ehm

is the actual execution time period of home appliance m at
time slot h. (2) The home appliance m starts to work no
earlier than the required start time αm and completes the
task no later than the deadline βm such that xhm = 0, ∀h <
αm or h > βm. Denote by lhn the energy consumption
of customer n at time slot h. Thus, the community energy
load Lh is calculated as Lh =

∑N
n=1 l

h
n. At time slot h, the

total energy consumption of customer n is equal to the total
energy consumption of all the home appliances such that∑
m∈An

xhme
h
m = lhn.

2.2 Net Metering
Each customer is installed with a home level PV panel and

a rechargeable battery. The PV panel serves as a DG unit to
the customer. The battery can store the residual energy for
future use. Denote by θhn the renewable energy generated
by the PV panel of the customer n at time slot h, which
is assumed to be approximately known in advance through
prediction. The renewable energy generated in the whole
community is calculated as Θh =

∑N
n=1 θ

h
n. The energy

storage of customer n at time slot h is denoted by bhn, which
is upper bounded by Bn such that 0 ≤ bhn ≤ Bn.

Net metering says that each customer can sell the energy
generated by the PV panel and stored in the battery back
to the grid. Thus, at each time slot, the customer could
purchase energy from the grid or sell energy to the grid.
Denote by yhn the energy trading amount of customer n at
time slot h. The customer purchases energy from the grid
if yhn > 0 and sell energy to the grid if yhn < 0. The energy
sold by a customer could be consumed by some neighbors
in the same community. Thus, the total amount of energy
purchased from the utility is

∑N
n=1 y

h
n. For each customer,

the battery storage at each time slot is constrained by
bh+1
n = bhn + θhn + yhn − lhn. (1)

2.3 Monetary Cost
The popular quadratic pricing model is used to compute

the monetary cost for purchasing energy from the utility.
Thus, the total monetary cost of the community at time
slot h is ph(

∑N
n=1 y

h
n)2 [9], where ph is the guideline price.

Each customer is paid with a partial price when selling
energy to the grid, which is denote by ph

W
where W ≥ 1 is

a constant. Thus, the total monetary cost of customer n at
time slot h is given as

Chn =

{
ph(

∑N
i=1 y

h
i )yhn, if yhn ≥ 0

− ph
W

(
∑N
i=1 y

h
i )yhn, if yhn < 0

. (2)

Note that the utility pays the customer with the rate ph
W

for selling energy back to the grid and sells it to other cus-
tomers with price ph. The difference between those two
prices is cost of the utility due to supporting net metering.
Plugging Eqn. (1) into Eqn. (2), the monetary cost of cus-
tomer n at time slot h can be rewritten in terms of energy
consumption, renewable energy generation and battery stor-
age as

Chn =


ph[

∑N
i=1,i 6=n(yhi ) + lhn + bh+1

n − θhn − bhn](lhn
−θhn − bhn + bh+1

n ), if lhn − θhn − bhn + bh+1
n ≥ 0

− ph
W

[
∑N
i=1,i6=n(yhi ) + lhn + bh+1

n − θhn − bhn](lhn
−θhn − bhn + bh+1

n ), if lhn − θhn − bhn + bh+1
n < 0

.

(3)

3. ENERGY LOAD PREDICTION CONSID-
ERING NET METERING

3.1 Game Formulation Considering Net Me-
tering

Given the above model of smart home technique, each
customer n aims to minimize his/her monetary cost within
the next 24 hours, which depends on the energy scheduling
and net metering/energy trading. Each customer aims to
assign the power level of each home appliance xhm and de-
termine the battery storage bhn. This naturally leads to a
game among customers as follows.



Net Metering Aware Energy Consumption
Scheduling Game
• Players: Customers {1, 2, . . . , N}
• Shared Information: yhn
• Optimization Problem:

P1 minimize

H∑
h=1

Chn

subject to

H∑
h=1

xhme
h
m = Em∑

m∈An

xhme
h
m = lhn

bh+1
n = bhn + θhn + yhn − lhn
xhm = 0, ∀h < αm or h > βm

Chn =



ph[
∑N
i=1,i 6=n(yhi ) + lhn + bh+1

n − θhn − bhn]

(lhn − θhn − bhn + bh+1
n ),

if lhn − θhn − bhn + bh+1
n ≥ 0

− ph
W

[
∑N
i=1,i 6=n(yhi ) + lhn + bh+1

n − θhn − bhn]

(lhn − θhn − bhn + bh+1
n ),

if lhn − θhn − bhn + bh+1
n < 0

• Decision Variables: xhm and bhn.

Each customer tends to follow the above game to minimize
the monetary cost, which means that solving it can predict
the energy load in the future given the guideline price.

3.2 Problem Solving
The iterative approach is a standard way to solve the en-

ergy consumption scheduling game in which each customer
solves Problem P1 assuming the total energy trading of
other customers is fixed in each iteration. After the new
solution is obtained, each customer updates the energy trad-
ing to solve Problem P1. This is repeated until convergence.
The complete procedure is described in Algorithm 1. In line
4, the customer determines xhm while assuming bhn is fixed us-
ing the dynamic programming based method proposed in [6].
In line 5, the customer determines the optimal battery stor-
age bhn using the stochastic optimization algorithm proposed.
Problem P1 is non-convex in terms of the battery storage.
To circumvent this difficulty, we propose a stochastic opti-
mization algorithm based on cross entropy optimization to
compute the battery storage that minimizes the monetary
cost.

Cross entropy optimization method is a stochastic opti-
mization technique based on importance sampling [3]. For
completeness, some theoretic foundation of the cross entropy
optimization method is included as follows. Consider the
following optimization problem as a generalization of P1.

minimize f(bn)

subject to bn ∈ B

bn = {b1n, b2n, . . . , bHn }
, (4)

where bn = {b1n, b2n, . . . , bHn } is the battery storage over the
time horizon and B is the feasible set of bn. In the cross
entropy optimization method, a probability density func-
tion (PDF) in B is employed, which is denoted by ρ(b, p)
while p characterizes the PDF. The cross entropy optimiza-
tion method aims to find the maximum value of ε such that

Algorithm 1 Net Metering Aware Energy Load Prediction
Algorithm

Require: Em, θhn, αm, βm, Xm and ph
1: while Not converge do
2: for Each customer n do
3: while Not converge do
4: Solve Problem P1 using dynamic programming

based method to compute xhm assuming bhn is
fixed.

5: Solve Problem P1 using cross entropy optimiza-
tion based method to compute bhn assuming xhm
is fixed.

6: end while
7: end for
8: end while
9: return xhm and bhn

P [f(bn) ≤ ε] → 0. Since P [f(bn) ≤ ε] cannot be known
analytically, the cross entropy optimization method evalu-
ates it using Monte-Carlo simulations. Denote by δ(ε) =
P [f(bn) ≤ ε] an indicator function and [B1,B2, . . . ,BK ] a
set of samples generated from the PDF ρ(b). Thus, the indi-

cator function is evaluated by δ(ε) = 1
K

∑K
k=1 P [f(Bk) ≤ ε].

However, P [f(bn) ≤ ε] is a rare event since it approaches
zero eventually. Thus, a large amount of samples are needed
to compute the maximum value of ε. To circumvent this
difficulty, the cross entropy optimization method utilizes the
idea of importance sampling. It updates the PDF ρ(b, p) to
improve the generated samples such that they will locate in
an area with better objective values. Denote by θ(b, p) the
optimal PDF. The estimation of δ(ε) can be presented by

δ̂(ε) = 1
K

∑K
k=0 P [f(Bk) ≤ ε] ρ(Bk)

θ(Bk)
.

Define by θ∗(b) = P [f(Bk)≤ε]ρ(b,p)
δ(ε)

the optimal PDF. Thus,

δ̂(ε) can approach the optimal value of δ(ε). The cross en-
tropy method finds the optimal PDF by minimizing the
Kullback-Leibler distance, which is equivalent to solving the
optimization problem

max
p

∫
θ∗(b) ln ρ(b, p)db, (5)

Thus, the optimal PDF in ρ(b, p), p∗ can be estimated as

p̂∗ = arg
p

max 1
K

∑K
k=1 P [f(Bk) ≤ ε] f(Bk,u)

f(Bk,w)
ln ρ(Bk, p). In

the optimization of battery storage, we repeatedly generate
samples using the PDF ρ(b, p) and update it through solving
Eqn. (5) until convergence.

4. IMPACT OF NET METERING TO PRIC-
ING CYBERATTACK DETECTION

The smart home system is vulnerable to cyberattacks.
The malicious hacker can attack the smart meter and ma-
nipulate the received guideline price. This can mislead the
smart home scheduling of the customers and impact the en-
ergy load. As demonstrated by [8], the cyberattacks can
significantly increase the peak to average ratio (PAR) of the
energy load, which can impact the stability of the power
grid. In terms of detection, [7] proposes to predict the fu-
ture guideline price from the historical data using support
vector regression (SVR) and compares it with the received
guideline price. Since this technique works only for single
event detection, subsequently a partially observable Markov
decision process based detection is developed for long term



monitoring and detection. However, net metering changes
the grid energy demand which also changes the guideline
pricing. Since the detection framework in [7] involves the
guideline pricing prediction, it could be compromised if the
net metering impact is not considered. It motivates us to
integrate the above cross entropy optimization based grid
energy prediction (and thus the guideline price prediction)
into the pricing cyberattack detection to improve detection
accuracy.

4.1 SVR Based Single Event Detection
At each single time slot, the cyberattack is detected based

on the comparison between the received guideline price and
historical data. Since the electricity price tends to be similar
in short term, support vector regression (SVR) is deployed
to predict the guideline price using only the historical data
[10]. However, such a prediction is not accuracy since the
energy demand prediction also needs to consider the net
metering impact.

As is known, the energy demand depends on the current
guideline price as well as the renewable energy generation.
Thus, we consider both the impact of the historical guideline
price and the renewable energy in our SVR model. Denote
by p = {p1, p2, p3, . . . , pT } the vector of guideline price from
time slot 1 to T . Denote by V = {Θ1,Θ2,Θ3, . . . ,ΘT } the
vector of renewable energy generation from time slot 1 to
T . Denote by D = {L1, L2, . . . , LT } the energy demand
from time slot 1 to T . We define a function G(p,V,D),
which models the predicted guideline price pv using the dif-
ference between the total energy demand and renewable en-
ergy. Thus, the single event defense technique originally
proposed in [7] is modified as follows.

• Predict the guideline price pv using SVR from the time
series G(p,V,D).
• The customers conduct smart home scheduling sim-

ulation with predicted and received guideline prices,
respectively.
• Compare the peak to average ratio (PAR) with pre-

dicted and received guideline prices, defined by Pp and
Pr, respectively.
• Cyberattack is reported if Pr − Pp > δP , where δP is

a predefined threshold.

4.2 POMDP Based Long Term Detection
The single event detection technique is based on the PAR

increase in a single time slot, which cannot address the cu-
mulative impact [7]. Furthermore, the transient variation of
the electricity price can reduce the detection accuracy. Thus,
a partially observable Markov decision process (POMDP)
based long term detection technique is proposed in [7]. For
completeness, some details of this technique are included as
follows.

The POMDP technique [4] takes the real world state s ∈ S
as the input and generates actions a ∈ A as the output [4].
Since the real world state cannot always be perfectly known,
the decision maker needs to estimate the state from the ob-
servation o ∈ O. Thus, state, observation and action are the
three key components of POMDP. A general POMDP prob-
lem is denoted by 〈S,O,A, T,R,Ω〉. In this problem, the
state is defined as the number of hacked smart meters such
that S = {s0, s1, . . . , sN}, where si means that there are to-
tally i smart meters hacked. Similarly, O = {o0, o1, . . . , oN},
where oi means that there are i smart meters hacked accord-
ing to the observation. In our long term detection technique,
the SVR based single event detection technique is used to

obtain the observation. Given the current state and observa-
tion, the decision maker has two available actions in the set
A = {a0, a1}. a0 means ignoring the cyberattack and con-
tinue monitoring the system. a1 means checking and fixing
the hacked smart meters.

POMDP models the mappings between the states when
an action is taken. When taking action a, the state tran-
sits from s to s′ with probability T (s′, a, s), which is called
transition probability. Meanwhile, the decision maker re-
ceives a reward R(s′, a, s). The mapping between states and
observations is defined as Ω(o, a, s) = P (o|a, s), which is
the probability of observation o conditioned on state s and
action a. In this problem, the state transition probability
T (s′, a, s) and observation function Ω(o, a, s) = P (o|a, s) are
trained based on the historical data. The reward function
R(s′, a, s) is defined based on the losses taken by each hacked
smart meter and the labor cost for checking and repairing
the hacked smart meters. Given the model, the POMDP
technique aims to optimize the discounted expected reward
through picking the optimal action, which is formulated as a
Bellman equation. Refer to [4, 7] for more details of POMDP
technique.

Our detection technique is illustrated in Figure 2. Given
the predicted and received guideline prices, the net meter-
ing aware energy load prediction technique is involved in
computing the PAR increase.

5. SIMULATION RESULTS
In this section, simulations are conducted to analyze the

impact of cyberattacks and the impact of net metering to
our defense techniques. In the simulation, we consider a
community consisting of 500 customers. The setup of the
energy consumptions of the customers is similar to the pre-
vious works [8, 7].

From Figure 3, Figure 4, Figure 5, Figure 6 and Table 1,
we make the following observations.
• Refer to Figure 3 for the prediction technique without

considering the impact of net metering even if it is
actually deployed. Shown in Figure 3(a) is the received
guideline price without cyberattack and the predicted
guideline price using the SVR based method in [8],
respectively. The predicted guideline price does not
match the received guideline price well such that it
forms a peak from 12:00 to 14:00 while it is a gap in the
received guideline price. Shown in Figure 3(b) is the
predicted energy load using this predicted guideline
price. The PAR is 1.4700.
• Refer to Figure 4 for the prediction technique con-

sidering net metering. Shown in Figure 4(a) is the
received guideline price without cyberattack and the
predicted guideline price considering net metering, re-
spectively. The predicted guideline price matches the
received one better than the SVR based method in [8].
Shown in Figure 4(b) is the predicted energy load using
the predicted guideline price in Figure 4(a). The PAR
is 1.3986. Comparing with this result, the PAR corre-
sponding to the predicted energy load in Figure 3(b)
is 1.4700−1.3986

1.3986
= 5.11% higher.

• Refer to Figure 5 for the impact of cyberattack. Shown
in Figure 5(a) is the manipulated guideline price. The
price is manipulated to be zero between 16:00 and
17:00. Shown in Figure 5(b) is the energy load un-
der cyberattack. Corresponding to the manipulated
guideline price, the energy load reaches a peak at 16:00
and 17:00. The PAR is 1.9037. This is 1.9037−1.4700

1.4700
=



Table 1: Simulation Results for Detection Techniques.

No Detection Detection without Considering Net Metering Detection Considering Net Metering
PAR 1.6509 1.5422 1.4112

Normalized Labor Cost - 1 1.0067

29.50% higher than the predicted energy load in Fig-
ure 3(b) and 1.9037−1.3986

1.3986
= 36.11% higher than the

predicted energy load in Figure 4(b).

• The POMDP based long term detection technique is
simulated in 48 hours and the results are shown in Fig-
ure 6 and Table 1, respectively. Refer to Figure 6. The
detection technique considering net metering has an
observation accuracy of 95.14% on average while it is
65.95% when the impact of net metering is not consid-
ered. The detection techniques with and without con-
sidering net metering are also compared in terms of the
corresponding labor cost and PAR of the energy load.
Refer to Table 1. Without any detection technique, the
PAR of the energy load is 1.6509. Using the detection
technique without considering net metering, the PAR
is decreased to 1.5422. Using the defense technique
considering net metering, the PAR is further reduced
to 1.4112. The detection technique considering net me-
tering can reduce the PAR by 1.5422−1.4112

1.5422
= 8.49%

at the cost of increasing the labor cost by 1.0067−1
1

=
0.67% compared to that without considering net me-
tering.
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Figure 6: Observation accuracy.

The net metering helps reduce the peak demand from
the grid rather than increasing it. Thus, the PAR
could be significantly reduced. On the other hand, the
detection detection of cyberattacks depends on PAR.
The predicted guideline price considering net meter-
ing leads to a lower PAR than that without consider-
ing net metering. The cyberattack induced PAR in-
crease is smaller than the actual increase when net
metering is not considered. This is why the detection
technique without considering net metering cannot de-
tect 95.14%− 65.95% = 29.19% of the cyberattacks as
demonstrated by our simulation results.

6. CONCLUSION
In this paper, the impact of net metering to the smart

home cybersecurity is analyzed. Since net metering impacts

the grid energy demand prediction and the guideline pric-
ing prediction, cyberattack detection, purely based on the
historical pricing detection, can be compromised without
considering it. Thus, a cross entropy optimization based
net metering aware energy prediction technique is developed
in this paper, which is further integrated into a POMDP
based smart home pricing cyberattack detection framework.
Our simulation results demonstrate that the new net meter-
ing aware smart home pricing cyberattack detection frame-
work can significantly improve the detection accuracy from
65.95% to 95.14% compared to a state-of-art detection tech-
nique.
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PAR=1.4700.
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Figure 4: Without cyberattack, considering net metering. (a) Received guideline price without cyberattack
and predicted guideline price. (b) Predicted energy load according to the predicted guideline price in (a),
PAR=1.3986.
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Figure 5: With cyberattack. (a) The manipulated received guideline price. (b) Energy load corresponding
to the manipulated received guideline price, PAR=1.9037.
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