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Abstract

Based upon the analysis of Random Number Generators
(RNGs) which amplify noise directly, the paper proposes
a new design theory to generate random number by com-
bining noise source and chaotic transformation in analog
circuit. According to the design guideline, the paper ana-
lyzes some characteristics of chaotic map, and proves the
key character of smoothing. The paper also introduces how
to choose parameters when employing these chaotic trans-
formation maps and the test results of chips designed ac-
cording to this method is given. Also, the proposed design
can intrinsically protect the unpredictability of generated
random numbers against some attacks on noise sources.

1. Introduction

Random Number Generators (RNGs) are widely used in
cryptography to generate random sequences used as cipher
keys, so the statistical characteristics of the sequences are
important to the security of the cryptosystem. RNGs can
be Mainly classified as follows: (i) based on noise amplifi-
cation [1]; (ii) based on oscillator sampling [2]; (iii) based
on chaos [3]. The statistical characteristics of the RNGs
based on noise amplification or oscillator sampling depend
on circuit noise, which is complicated and is easily affected.
These RNGs are difficult to implement in high-speed field
so the chaos method is being received ever increasing atten-
tion. Still, there are many theoretical problems needed to
be solved. In the paper we propose a new design theory of
RNGs by combining noise source and chaotic transforma-

Figure 1. RNG based on noise amplification

tion. We also analyze and prove their main characteristics
and counter-attack behavior.

2. Design Principles

Figure 1 is a simple RNG based on Noise Amplifica-
tion: The noise from the source is amplified, sampled in
discrete time, and then converted to output sequences of
random numbers. It can be seen that the input of sampling
is the noise amplified by amplifier, but pure noise cannot
fulfill the demand of cryptography. For example, thermal
noise and flicker noise of MOS transistor are main noises in
CMOS IC[4]. The thermal noise statistically meets Gaus-
sian distribution, while the flicker noise is a 1/f noise whose
power spectral density is inverse ratio to frequency and its
distribution is log-normal over a broad range[6]. Moreover,
in real circuit, there are many interfering facts from output
circumstance. So these complex noise conditions will make
the final random sequence not fit for cryptography systems.
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Figure 2. Noise Chaotic Transformation RNG

Therefore, this paper aims to improve the RNG’s archi-
tecture and design theory fundamentally: Under the es-
sential demand of RNG, there should be a natural non-
deterministic process circuit(for example,noise) to gain true
randomness. If the statistical characteristics of the gener-
ated random sequence do not fulfill the demand of cryptog-
raphy, the chaotic transformation in analog circuit can be
used for correction. The extra advantage of this transforma-
tion used to improve randomness is that real circuit param-
eters are not quite ideal, and the maps of transformation in
chip are often different from those in theory.

Chaotic transformation circuit should fulfill some guide-
lines as follow. Assuming that S is the map of transforma-
tion, the input of S comes from the noise source, and the
output of it is sampled subsequently.

(i)S should be a self map on T → T , T ⊆ R, because
the output of the map feeds back and is mixed with the input
noise to generate next state’s output.

(ii) S is time discrete, because the value of the map feed
back, and the output of S is connected to discrete sampling
circuit in time domain. If S is not time discrete, the sta-
tistical characteristic of the random sequence would not be
improved, like the amplifier in Figure 1.

(iii) S is value sensitive, so under the effect of small
noise, the trajectories of S would have a large separation
which improves randomness of generated numbers.

(iv) S must have an interval of noise tolerance. Because
the input of S is mixed with random noise and the charac-
teristic of the self-map should not be destroyed.

(v) S has a key characteristic of smoothing the input to
uniform distribution, so it could finally improve the statisti-
cal characteristic of the random sequence.

Figure 2 shows the structure of our Noise Chaotic Trans-
formation RNG. Note that the alarm signal in figure 2 is
used for attack detection and will be introduced later.

Figure 3. Point attractors and chaotic attrac-
tors of piece-wise linear map (1)

3. Chaotic Transformation Map

According to the design guidelines described in Section
2, we choose the following Piecewise-Linear Map (1) to
achieve chaotic transformation. The Lyapunov exponent of
map (1) is λ = ln(2k). When its trajectories are not stable,
there should be λ > 0, and then k > 0.5. The chaotic
attractor of the Map (1) is [−q, q], and the point attractor is
±q/(2k− 1). The chaotic attractor should be located at the
interval between point attractors, i.e. q ≤ q/(2k − 1), and
then k ≤ 1.

xn+1 =

{
2kxn + q, xn < 0,

2kxn − q, xn ≥ 0,
(1)

The Map (1) has basic characteristics as follows:
(i) The Map (1) is a self map of xn → xn+1.
(ii) The Map (1) is time discrete.
(iii) When 0.5 < k ≤ 1, its Lyapunov exponent λ =

ln(2k) > 0,The Map (1) is a chaotic map and the trajecto-
ries are not stable, so it is value sensitive.

(iv) The chaotic attractor of the Map (1) is [−q, q], and
the point attractor is ±q/(2k − 1). So the distance between
chaotic attractor and point attractor is e = q/(2k − 1) − q.
According to the characteristic of the Map (1), if the noise
amplitude P < e, , the total input xn±P ∈ (−q−e, q+e),
we have the next xn+1 ∈ [−q, q], so the input noise will not
destroy the self map, and e is the interval of noise tolerance.

(v) The Map (1) can smooth the input to uniform distri-
bution, i.e. any initial distribution would convert to uniform
distribution after infinite states. This key characteristic can
be proved as below under the evolution of density function
in the iterative process.

The chaotic map of (1) is denoted as S, which is a self
map, having sufficient initial states: x0

1
, x0

2
, . . . , x0

N .
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Figure 4. Counterimage of [a, x] under S

The new states are transformed from the initial states un-
der S:

x1

1
= S(x0

1
), x1

2
= S(x0

2
), . . . , x1

N = S(x0

N )

The characteristic function help to describe the density
function as follow:

IΔ =

{
1, x ∈ Δ,

0, x /∈ Δ,
(2)

For every interval (not too small) Δ0 ⊂ [−q, q], the den-
sity function f0(x) of initial state x0

1
, x0

2
, . . . , x0

N acts as:

∫
Δ0

f0(u)du ≈ 1
N

N∑
j=1

IΔ0(x
0

j ) (3)

Likewise the density function of x1

1
, x1

2
, . . . , x1

N is:

∫
Δ

f1(u)du ≈ 1
N

N∑
j=1

IΔ(x1

j ) (4)

To find a relationship between f1 and f0, the counterim-
age is introduced. For Δ ⊂ [−q, q], the counterimage is
described as S−1(Δ) = {x : S(x) ∈ Δ}. In the Figure 4,
the counterimage of [a, x] under S is the union of the two
intervals.

For any Δ ⊂ [−q, q], we have x1

j ∈ Δ, if and only if
x0

j ∈ S−1(Δ).
Thus we acquire the useful relation

IΔ(x) = IS−1(Δ)(x) (5)

Rewrite (4):∫
Δ

f1(u)du ≈ 1
N

N∑
j=1

IS−1(Δ)(x0

j ) (6)

Because Δ and Δ0 are arbitrary intervals, it could be
simply written as Δ0 = S−1(Δ), so from (3) and (6) we
can get: ∫

Δ

f1(u)du =
∫

S−1(Δ)

f0(u)du (7)

When the interval Δ = [a, x], the expression of f1 is:∫ x

a

f1(u)du =
∫

S−1([a,x])

f0(u)du (8)

Differentiate with respect to x:

f1(u) =
d

dx

∫
S−1([a,x])

f0(u)du (9)

Hence f1 will depend on f0, (9) could be described as
f1 = Pf0, so that:

Pf =
d

dx

∫
S−1([a,x])

f(u)du (10)

According to (1), S could be transformed
to S−1([a, x]) = [(a − q)/2k, (x − q)/2k] ∪
[(a + q)/2k, (x + q)/2k], substitute (10) for
Pf = (1/2)(f(x/2k − q/2k) + f(x/2k + q/2k)).

Likewise, P operator could be used twice for previous
two states:

P (Pf) = P 2f =(1/2)
2
(f(x/(2k)

2 − q/(2k)
2 − q/(2k))

+ f(x/(2k)
2 − q/(2k)

2
+ q/(2k))

+ f(x/(2k)
2

+ q/(2k)
2 − q/(2k))

+ f(x/(2k)
2

+ q/(2k)
2

+ q/(2k)))

so that P operator could be used for previous n states:

P
n

f =
1

2n

∑
a1,a2,...,an

f(
x

(2k)n
+

n∑
i=1

(−1)
ai

q

(2k)i
), ai ∈ {0, 1} (11)

Equation (11) is the average of the 2n term of the den-
sity function of counterimage, whose upper limit is Max =
q/(2k − 1) and lower limit is Min = −q/(2k − 1). When
n→∞, the counterimage will fill [−q/(2k−1), q/(2k−1)]
fully, and the density function of one point in [−q, q] at
present is equal to the average of the density functions of
all points in [−q/(2k − 1), q/(2k − 1)] infinite states ago.
So the density function of every point in [−q, q] is equal sta-
tistically, i.e. considering any distributions of initial states
x0

1
, x0

2
, . . . , x0

N , after iterations of (1), the afterward states
will intend to be uniform.

4. Implementation

According to section 3, in order to have a low redun-
dancy, the value of k should be close to 1. If so, however,
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Table 1. Comparison of pass rates with and
without chaotic transformation in the aspects
of Frequency, Block-Frequency, Cumulative-
sums and Runs

NIST Length of Number of Pass rate without Pass rate with
Test bench sequences: n sequences: m transformation transformation
Frequency 1000 1000 0.5250 0.9920

Block-Frequency 1000 1000 0.6530 0.9900
Cumulative-sums 1000 1000 0.5320 ≥ 0.9910

Runs 1000 1000 0.7470 0.9890

the noise protection side-band e = q/(2k − 1) − q = 0,
which means the map (1) can not resistant against noise.
In our implementation, we choose k = 0.95 and q =
0.9, hence, the point attractors are q/(2k − 1) = 1 and
−q/(2k − 1) = −1, the chaotic attractor is [−0.9, 0.9] and
e = 0.1, which means the map (1) can resistant against 10%
of the noise.

We use switched capacitor circuit to achieve the chaotic
transformation map. The test chip was taped out under
SMIC 0.18μm technology and the random number gener-
ation rate is 20 Mbps. The result of test is listed in Table
1 in which we can find that the main shortages enclosed
with RNGs based on noise amplifying such as frequency,
block-frequency, cumulative-sums, runs, etc. are improved
significantly.

5. Conclusion

In the paper we propose a new method using analog
chaotic transformation map other than digital circuit to con-
struct a random number generator and explained its main
design guidelines. To generic, this is a design by combing
chaotic and noise to generate true random numbers in ana-
log circuit. An example of piecewise linear chaotic map is
given and taped out with SMIC 0.18μm process. Further
work will be taken in this field. Mathematical transforma-
tion such as chaotic map will be of greater theoretical mean-
ing in our method definitely.
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