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Control-Flow Integrity (CFI) is a promising and general defense against control-flow
hijacking with formal underpinnings. A key insight from the extensive research
on CFI is that its effectiveness depends on the precision and coverage of a pro-
gram’s Control-Flow Graph (CFG). Since precise CFG generation is highly challeng-
ing and often difficult, many CFI schemes rely on brittle heuristics and imprecise,
coarse-grained CFGs. Furthermore, comprehensive, fine-grained CFI defenses im-
plemented purely in software incur overheads that are unacceptably high.

In this chapter, we first specify a CFI model that captures many known CFI
techniques, including stateless and stateful approaches as well as fine-grained
and coarse-grained CFI policies. We then design and implement a novel hardware-
enhanced CFI. Key to this approach is a set of dedicated CFI instructions that can
losslessly enforce any CFG and diverse CFI policies within our model. Moreover,
we fully support multi-tasking and shared libraries, prevent various forms of code-
reuse attacks, and allow code protected with CFI to interoperate with unprotected
legacy code. Our prototype implementation on the SPARC LEON3 is highly effi-
cient with a performance overhead of 1.75% on average when applied to several
SPECInt2006 benchmarks and 0.5% when applied to EEMBC’s CoreMark bench-
mark.

7.1 Introduction
Control-flow integrity has been proposed as a general defense technique against
control-flow hijacking attacks [Abadi et al. 2005a, Abadi et al. 2009]. In particular,
it defends against modern code-reuse attacks, such as Return-Oriented Program-
ming (ROP) [Roemer et al. 2012]. These attacks are prevalent, Turing-complete,
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182 Chapter 7 Hardware Control Flow Integrity

and are repeatedly leveraged to compromise commonly used applications such
as web browsers [Marschalek 2014] and document viewers [jduck 2010]. CFI miti-
gates these attacks by ensuring that an application follows a legitimate control-flow
path. The legitimate paths are manifested in the application’s control-flow graph
derived during an offline static analysis phase. Whenever an attacker attempts to
subvert the execution to follow an illegal control-flow path, CFI detects this ma-
licious control flow and immediately terminates the process. In addition, CFI is
not vulnerable to memory disclosure and side channel attacks [Snow et al. 2013,
Bittau et al. 2014, Seibert et al. 2014], and allows verifiable security [Abadi et al.
2005b].

A number of CFI schemes have been proposed that aim at introducing practical
CFI enforcement incurring almost no overhead [Zhang and Sekar 2013, Zhang et al.
2013, Pappas et al. 2013, Cheng et al. 2014]. On the other hand, these schemes
enforce coarse-grained CFI policies that an attacker can bypass [Göktas et al. 2014a,
Davi et al. 2014, Carlini and Wagner 2014, Göktaş et al. 2014b, Schuster et al. 2014].
In parallel to the development of practical CFI schemes, a number of defenses
have been proposed that focus on a CFI subclass, i.e., only protecting indirect
virtual calls to C++ virtual methods [Gawlik and Holz 2014, Zhang et al. 2015,
Prakash et al. 2015]. However, Schuster et al. [2015] recently demonstrated that
modern programs offer a large number of valid virtual methods. Hence, an attacker
can exploit the available virtual methods to launch a code-reuse attack. Further,
Google recently released a CFI compiler extension for virtual calls [Tice et al. 2014]
that resists the latest attacks on virtual method exploitation [Schuster et al. 2015],
but can be circumvented by means of stack attacks [Liebchen et al. 2015]. Last,
Carlini et al. [2015e] question the overall benefit of CFI, since even fine-grained
CFI protection still offers a large code base of valid CFG nodes and edges that an
attacker can exploit.

The continued success of code-reuse attacks has several reasons. First, many
CFI defenses evaluate their effectiveness based on existing exploits, which naturally
do not align to any given CFI policy. These exploits are typically more sophisticated
and can be rewritten to align to the CFI-enforced CFG [Carlini et al. 2015e, Liebchen
et al. 2015, Carlini and Wagner 2014, Davi et al. 2014, Göktas et al. 2014a]. Second,
CFI defenses leverage unreliable metrics, such as gadget reduction, gadget length,
or average indirect branch reduction (AIR), to measure CFI precision [Zhang and
Sekar 2013, Kayaalp et al. 2012, Niu and Tan 2014a, Mohan et al. 2015, Arias et al.
2015, Tice et al. 2014]. These metrics have frequently over-estimated the provided
security and have been shown to be bypassable [Carlini et al. 2015e, Göktas et al.
2014a, Davi et al. 2014, Carlini and Wagner 2014].
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7.1 Introduction 183

In this chapter, we first address the mismatch between a sound CFI policy and
various insecure implementations by revisiting CFI to provide a comprehensive
model covering many CFI policies proposed today. We then develop a precise,
stateful CFI policy that enables us to address the granularity of a given CFI scheme
and make informed design decisions regarding protection and cost of coverage. We
then introduce a general-purpose, hardware-enhanced CFI platform that scales to
the coverage provided by any CFG, enables highly efficient enforcement of diverse
CFI policies, and losslessly enforces any provided CFG.

We also evaluate runtime attacks and CFI vulnerabilities using hardware-
enhanced CFI by first evaluating its effectiveness based on the most current code-
reuse attacks [Carlini et al. 2015e, Schuster et al. 2015, Carlini and Wagner 2014,
Göktas et al. 2014a, Davi et al. 2014, Checkoway et al. 2010, Tran et al. 2011,
Liebchen et al. 2015]. These attacks are able to perform malicious actions while
adhering to the restrictions imposed by a CFI-protected system. We additionally
address attacks targeting both C and C++ applications as well as JIT-compiled
programs. Our evaluation focuses on fundamental attacks that manipulate or oth-
erwise violate our CFI policy, assuming we are provided with a precise CFG.

We take a hardware-based approach for several reasons. First, as we will show,
CFI in hardware along with dedicated CFI instructions scales for any CFG and var-
ious CFI policies from very coarse-grained to highly precise control-flow checks.
Second, a hardware-based approach allows us to instantiate a CFI processor mod-
ule that highly improves the efficiency of CFI while offering strong, precise CFI
protection. Third, hardware-based CFI enables precise stateful CFI policy enforce-
ment. Fourth, a CFI processor module can be associated to an on-chip, dedicated
memory that securely isolates CFI data (e.g., CFG information).

We conducted a performance evaluation of our approach using SPEC2006
benchmarks and CoreMark micro-benchmarks on the SPARC LEON3 processor
[Gaisler Research 2017]. Our system is highly efficient, incurring almost no per-
formance overhead; on average only 1.75% for SPEC and 0.5% for CoreMark. Our
hardware-enhanced CFI area overhead is negligible and can be clocked up to 3 GHz
using a 32/28 nm process.

In summary, our core contributions of this chapter are as follows.

CFI model. We revisit CFI to reason about the protection offered by various
CFI implementations and policies that have been presented thus far, and
present precise, stateful CFI.

Scalable, precise CFI enforcement. We present a design that scales to any CFG
provided and losslessly enforces the provided CFG.
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184 Chapter 7 Hardware Control Flow Integrity

Comprehensive prevention. Our CFI hardware platform prevents many known
code-reuse attacks: traditional ROP [Shacham 2007], ROP without returns
[Checkoway et al. 2010, Davi et al. 2014, Carlini and Wagner 2014] dy-
namic ROP [Snow et al. 2013], JOP [Checkoway et al. 2010], and full-function
reuse [Schuster et al. 2015, Tran et al. 2011].

CFI hardware platform. We present the design, implementation, and evalua-
tion of a scalable and highly efficient hardware-enhanced CFI implementa-
tion for the open source SPARC LEON3 hardware platform. Our hardware
platform features new CFI instructions that support precise enforcement at
diverse CFG granularities.

We stress that the goal of this chapter is the introduction and design of a hard-
ware CFI framework that can enforce CFI policies of different precision, including
coarse- and fine-grained variants. Our work is explicitly not about sophisticated
static analysis of source code or advanced binary analysis to extract fine-grained
control-flow graphs. Generation of CFGs for real-world software remains an open
research problem. However, issues in CFG generation are orthogonal to the chal-
lenges we address: making CFI enforcement efficient by adding dedicated instruc-
tions and supporting hardware.

7.2 Threat Model and Assumptions
Our threat model follows the traditional CFI threat model. We assume an adversary
who has arbitrary read and write access to data memory, and read access to code
memory. As a consequence, the CFI threat model tolerates memory disclosure
attacks, i.e., it allows information leakage but still protects applications against
memory corruption attacks. The attacker can be either a local or remote attacker.
However, the attacker only has access to user applications, as kernel exploits can
undermine any security mechanism implemented for user-space applications.

CFI aims at defending against runtime exploits that violate the integrity of the
program’s control flow to perform malicious actions. That said, we target benign
applications that an attacker attempts to compromise, but do not protect against
applications that are inherently malicious. This includes cases where the attacker
modifies the binary either in disk or memory. Further, we focus on code-reuse
attacks but not code injection attacks, whichtoday are prevented by means of Data
Execution Prevention (DEP) [Andersen and Abella 2004].

It is important to note that CFI does not defend against the so-called non-
control-data attacks [Chen et al. 2005]. These attacks do not modify any code
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7.3 Requirements 185

pointer but non-control data, such as an authentication variable. Recently proposed
hybrid attacks, called Control-Flow Bending (CFB), include both exploitation of
non-control data and control data [Carlini et al. 2015e]. Our threat model focuses
on the control-data part of the attack.

Return-oriented programming is a generic attack instantiation of code-reuse at-
tacks: it combines short instruction sequences (gadgets) from various functions
to generate a new malicious program [Roemer et al. 2012]. Typically, these se-
quences end with a return instruction to transfer control to the subsequent se-
quence [Shacham 2007]. That said, these attacks exploit backward edges (returns) of
a program’s control-flow graph. However, an attacker can also leverage sequences
that terminate with an indirect call or jump instruction [Checkoway et al. 2010],
that is, code-reuse attacks that exploit forward edges in the CFG. Sometimes these at-
tacks are referred to as Jump-Oriented Programming (JOP) [Checkoway et al. 2010].
Both attack variants, ROP and JOP, have been shown to be Turing-complete, mean-
ing that the identified code sequences form a Turing-complete language. We aim
at defending against these attacks based on control-flow integrity in hardware.

Another code-reuse attack variant is a function-reuse attack that only invokes a
chain of library functions [Nergal 2001, Schuster et al. 2015, Tran et al. 2011]. Exist-
ing CFI schemes rarely provide protection against these attacks. In fact, preventing
these attacks is highly challenging: Consider a program that legitimately invokes
a critical function, e.g., open(), via an indirect call. As a consequence, the critical
function is considered a legitimate control-flow target in CFI. Protection of these
code-reuse attacks are within the scope of our threat model.

7.3 Requirements
The requirements that satisfy the goals of a lossless, scalable, and highly efficient
hardware-enhanced CFI framework are given below.

Precision. We must losslessly enforce any CFG with which we are provided. In
general, it may be impossible to resolve a precise CFG either because source
code is unavailable or the analysis is imprecise. In any case we must strictly
enforce what we are given.

Scalability. The effectiveness of any CFI approach depends on the CFG pre-
cision. Hence, we require that our CFI scheme scales to any level of CFG
precision. Given a CFG, we should be capable of enforcing precise CFI. Our
system should also be capable of enforcing coarse-grained CFI if no precise
CFG is available.

Holz et al. first pages 2017/11/27 11:09 p. 185 (chap07) Windfall Software, PCA ZzTEX 17.7



186 Chapter 7 Hardware Control Flow Integrity

Efficiency. One of the main limitations of software-based CFI approaches are
their significant performance overhead. As a consequence, we require negli-
gible performance overhead for our CFI scheme.

Stateful. We require stateful CFI since stateless CFI is vulnerable to stitch-
ing gadgets [Göktas et al. 2014a, Davi et al. 2014, Carlini and Wagner
2014, Göktaş et al. 2014b, Schuster et al. 2014] and control-flow bending
attacks [Carlini et al. 2015e].

Compatibility. A CFI scheme needs to co-exist with legacy programs that are
not instrumented with CFI.

Security. Based on a precise CFG, we require the CFI scheme to cover all of the
existing code-reuse attacks including traditional return-oriented program-
ming [Shacham 2007], jump-oriented programming [Checkoway et al. 2010],
just-in-time code-reuse attacks [Snow et al. 2013], and whole
function-reuse attacks [Schuster et al. 2015].

7.4 Modeling CFI
It has been more than a decade since Abadi et al. [2005a] introduced the idea
of control-flow integrity. Since then, various CFI implementations have been pro-
posed, each with different performance and security metrics. We have noticed that
there is a division in the community regarding what encompasses a “fine-grained”
or “coarse-grained” policy and the kind of security each provides. In the remainder
of this section, we present an abstract description of CFI and then use it to state
the requirements of a theoretical CFI policy that can provide as much protection
as possible. We start by defining a control-flow graph. Subsequently, we extend this
mechanism to include the notion of execution state in a process. Using these def-
initions, we develop a CFI policy that can yield the maximum protection possible
under the framework of what is computable and decidable. Our definitions can be
shown to be equivalent to those presented in Abadi et al. [2005b], while presenting
extensions to incorporate missing elements when needed.

7.4.1 Control-Flow Graph
To introduce our definition of a control-flow graph, we need to define its com-
ponents. Let C be the set of control-flow instructions and I be the set of non-
control-flow instructions. Then we say that a node Ni consists of a sequential set
of non-control-flow instructions. That is, Ni = {I1, I2, I3, . . . , Iz}, I1, . . . ,z ∈ I. An edge
Ej is given by an instruction IC ∈ C, which transfers control (→) to a new node Ni
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7.4 Modeling CFI 187

(e.g., a call to a new function or jump to a case statement within the same function)
or to the same node Ni−1 (e.g., a for loop). That is, Ej : Ni−1 → (Ni ∨ Ni−1). Using
these definitions, a precise control-flow graph for an arbitrary program P is char-
acterized by the set of 2-tuples CFG = {CFG(0, 0), CFG(0, 1), . . . , CFG(m,n)}, where
CFG(i ,j) = (Ni , Ej). We should note that not all combinations (i , j) need to exist
in a CFG. Furthermore, if a program has no dead code (unreachable code), it can
be shown that the CFG is connected.

7.4.2 Control-Flow Integrity Policy
A control flow integrity policy must ensure that a program follows the intended
execution path given by its CFG. Accordingly, a CFI policy defines a model for pro-
gram execution such that whenever a control-flow instruction executes, it targets a
valid destination in its CFG. An ideal control-flow graph will provide all valid target
destinations for an arbitrary program.

CFI policies are therefore constrained to enforcing all possible benign paths in
an arbitrary CFG. Any CFI policy can be evaluated by its ability to completely enforce
the intended execution path of a program or the extent to which it completely
reflects a program’s CFG. Therefore, a CFI policy’s precision is a fundamental
metric of its coverage and/or protection. The CFI policy must losslessly enforce
only valid CFG paths. The precision with which a CFI policy completely reflects a
CFG is given by granularity. The granularity G of a CFI policy K is determined by
how closely it reflects the precise CFG of a process P .

7.4.2.1 Precise Static CFI
We consider the granularity G of a CFI policy to be either precise or coarse. Consider
the portion of a CFG for a process shown in Figure 7.1. The set of 2-tuples CFG =
{(N1, E1), (N2, E3), (N4, E5), (N5, E2), (N5, E4), (N5, E6)} represent the static CFG.
A precise static CFI approach contains a representation and enforcement of only
these node-edge 2-tuples.

Definition 7.1 Precise static CFI. The precise static CFI policy K for a process P is given by strict
enforcement of its CFG, that is, K : CFIP → CFG.

Figure 7.1 reflects a portion of a static CFG for a particular process, where shaded
areas represent functions. Edges E1, E3, and E5 represent function calls and edges
E2, E4, and E6 function returns. Although the CFG in Figure 7.1 depicts control
flow for the process, there is insufficient information to determine the proper
behavior of a return path, or backward edge. Although the CFG depicts the path
N4 → N5 → N3 through edges E5 and E4 as viable, it is logically incorrect, as the
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Figure 7.1 Portion of a CFG.

return target should be N6. As such, a CFI policy that enforces this CFG without any
extra information is inherently incomplete, as backward edges are loosely handled.
This is exactly the point of weakness that has been exploited in recent CFI [Göktas
et al. 2014a, Davi et al. 2014, Carlini and Wagner 2014, Göktaş et al. 2014b, Schuster
et al. 2014] and control-flow bending attacks [Carlini et al. 2015e].

7.4.2.2 Precise, Stateful CFI
Given this limitation of the CFG, it is crucial to introduce the concept of state and
add it to the CFG.

Definition 7.2 CFG state. A CFG state is a set Sk = {E0, E1, E2, . . . , Ep} of valid non-jump forward
edges on a CFG for a process P .

We do not include jump edges in our CFG state definition because there is no
state to be recovered by the transition, i.e., they do not store a return address on
the stack. Furthermore, we allow backward edges to remove elements from the
state set in an orderly fashion. We combine this concept of state with the CFG
to make a precise, stateful CFG. We define a stateful CFG to be a set of 3-tuples,
CFGS = {CFG(0, 0, 0), CFG(0, 1, 1), . . . CFG(m,n,o)}, where CFG(i ,j ,k) = (Ni , Ej , Sk).

Figure 7.2 reflects the CFG with states added. Here, backward-edge paths are
only taken if the proper state is preserved. As such, execution path N4 → N5 → N3

through edges E5 and E4 is now illegal because the state is not correctly preserved in
execution, i.e., S3 �= S2 in the stateful CFG. We call a CFI policy capable of enforcing
a stateful CFG a precise, stateful CFI policy.
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7.4 Modeling CFI 189

Definition 7.3 Precise, stateful CFI. The precise, stateful CFI policy K for a process P is given by
strict enforcement of its stateful CFGS, that is, K : CFIP → CFGS.

7.4.2.3 Coarse-Grained CFI
A coarse-grained CFI policy is any policy that does not meet the requirements of
precise, stateful CFI. Consider again the execution path N4 → N5 → N3 through
edges E5 and E4 shown in Figure 7.2. This execution path is illegal as it does not
maintain the execution state imposed by the stateful CFG. As such, a CFI policy that
allows for this execution path to exist contains erroneous edges. We define E to be
the set of erroneous edges included in the CFI policy enforcement and consider
this policy to be coarse-grained.

Definition 7.4 Coarse-grained CFI. The coarse-grained CFI policy K for a process P is given by
K : CFIP → CFG′ = CFGs ∪ E, where E is the set of unintended edges.

Corollary 7.1 Granularity of a policy. The granularity G of the policy K is said to increase as |E|
increases.

At this point, it is noteworthy to mention that all CFI schemes known to the
authors add some factor E. Even the original CFI implementation for x86 considers
two destinations as equivalent when the CFG contains edges from the same set of
sources [Abadi et al. 2009].

�1

�4 �6

�2

�5

�3

E1, �1

E5, �3 E6, �3

E4, �2

E2, �1 E3, �2

Figure 7.2 Portion of a stateful CFG.
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7.5 Constructing a Precise Stateful CFI Policy
We use Figure 7.2 throughout this section to define both a precise forward-edge
and backward-edge stateful CFI policy.

7.5.1 Precise Forward-Edge Stateful CFI Considerations
A precise forward-edge stateful CFI policy must be capable of strictly enforcing the
intended execution path of a process according to its stateful CFG. That is, it must
reflect forward-edge transitions and it must not introduce granularity by allowing
erroneous edges in an execution path.

Consider the stateful CFG depicted in Figure 7.2. We define ≯(Ni) to be the set of
valid targets {Ni+1, Ni+2, . . .} for node Ni. For example, ≯(N5) = {N2, N3, N6}. Since
this node has multiple branch targets (| ≯(N5)| ≥ 2), we call it a divergent node. If the
edges leaving a divergent node are caused by indirect jumps, such as those in a jump
table, or an indirect call targeting multiple functions, the stateful CFG is unable
to fully predict the behavior of the branches as this requires taking into account
user input. Full computation of a process behavior under these circumstances
reduces to the halting problem. This results in a lower bound in the coarseness
of a forward-edge stateful CFI policy. For divergent nodes, the most precision that
can be obtained in a forward-edge CFI policy is by checking the branch target of a
node against the members of its ≯-function.

Consider again the CFG depicted in Figure 7.2. We define �(Ni) to be the set
of valid nodes {Ni−1, Ni−2, . . .} that can target node Ni. For example, �(N5) =
{N1, N2, N4}. Since this node has multiple branch sources (| �(N5)| ≥ 2), we call it
a convergent node. Function entries that are targeted from multiple indirect call
instructions exhibit this behavior. A stateful CFG must then be able to encode
transition information in such a way that the source of the transition can be differ-
entiated and validated. For example, the CFI policy must reflect that N5 is targeted
by N1 along edge E1, as opposed to N4 along edge E5. Failure to do so results in a
coarse-grained CFI policy.

7.5.2 Constructing a Precise Forward-Edge Stateful CFI Policy
Eliminating the granularity due to divergent and convergent nodes is therefore
necessary to ensure that a forward-edge CFI policy is precise. We separate our
precise forward-edge stateful CFI policy into two categories: (1) indirect jumps and
(2) indirect calls and indirect tail call jumps.
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7.5 Constructing a Precise Stateful CFI Policy 191

7.5.2.1 Indirect Jumps
An indirect jump is constrained to targeting a valid destination, as given by the
stateful CFG. In compiled code, indirect jumps, with the exception of indirect tail
call jumps, will always target constructs within function bounds. We require that
indirect jumps may only target a member of the source node’s ≯-function as given
by the stateful CFG.

7.5.2.2 Indirect Calls and Indirect Tail Call Jumps
Indirect calls and tail call jumps are constrained to targeting valid destinations,
as given by the stateful CFG. In portable, standards-compliant code, these destina-
tions are function entries. We require that indirect calls and tail call jumps may only
target a member of the source node’s ≯-function as given by the stateful CFG. Fur-
thermore, any additional state information about this transition must be recorded
by the policy.

7.5.3 Precise Backward-Edge Stateful CFI Considerations
A precise backward-edge CFI policy must be capable of exactly enforcing the in-
tended execution path of a process according to its stateful CFG. It must not intro-
duce granularity by allowing erroneous edges in an execution path.

Consider the ≯-function for node N5 in Figure 7.2, where ≯(N5) = {N2, N3, N6}
and the corresponding �-function �(N5) = {N1, N2, N4}. In the case that node N5

is the epilogue of a function, the precise stateful CFI policy must be able to use
state information to identify the valid return path. It must be able to utilize state
information given by the forward-edge transition from a member of �(N5) to vali-
date the backward-edge transition into a member of ≯(N5). For example, if the path
is given by N4 → N5, then the state information provided is S3. Only a member of
≯(N5) with state S3 may be targeted, in this case N6.

7.5.4 Constructing a Precise Backward-Edge Stateful CFI Policy
Eliminating erroneous backward edges caused by divergent nodes in a CFG is
therefore necessary for any precise backward-edge stateful CFI policy. We can en-
force this policy by accurately depicting the execution path based on a program’s
forward-edge behavior. Resolving a valid transition for a backward edge is only a
matter of restoring to the previous state in the execution path. More precisely, a
precise backward-edge stateful CFI policy must only allow returns to the most re-
cent forward-edge transition. As such, a precise backward-edge stateful CFI policy
maintains a representation of these transitions.
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192 Chapter 7 Hardware Control Flow Integrity

7.5.4.1 Return Instructions
Return instructions are constrained to follow only the edges with a matching state
as described in the stateful CFG, i.e., the code location following the call instruction
that resulted in the execution of the returning function. For example, in Figure 7.2
the CFI policy must enforce the backward edge E6 if node N5 was accessed using
the forward edge E5, as this maintains the state S3.

7.6 Hardware-Enhanced CFI: Design and Implementation

7.6.1 Overview
To restrain the execution of a program to its stateful CFG, a precise stateful CFI
policy must enforce the policies outlined in Sections 7.5.2 and 7.5.4. However, a
general challenge in designing a system capable of enforcing a precise, stateful
CFI policy is how to encode and record the backward- and forward-edge state of a
process and how to ensure efficient enforcement.

To solve these problems, we extend the instruction set of an architecure and
add dedicated hardware. The Instruction Set Architecture (ISA) extensions enable
dynamic creation of a stateful CFG, which in turn allows us to encode, record, and
enforce precise, stateful CFI. The execution-path behavior of the program is en-
coded in our ISA extensions, where dedicated hardware is instructed to validate
the forward- and backward-edge state of the program. In particular, we track both
forward and backward edges by means of CFI instructions each processing a la-
bel: cfiins lbl. Forward-edge state is encoded by a CFI instruction, where the
label (lbl) is a valid target determined by the CFG and recorded in a label state
register. Backward-edge state is encoded by the execution path’s forward-edge be-
havior as an cfiins lbl, where the label (lbl) is recorded in a label state stack.

A Label State Stack (LSS) is used to record backward edges to tightly couple
caller/callee pairs and ensure only the most recently executed forward edge is
returned to. A Label State Register (LSR) is used to record forward edges because
there are inherent program semantics that prevent it from being coupled with the
label state stack, such as fall-through in a case statement (see Section 7.6.4). We
enforce precise, stateful CFI using a simple state machine supervising execution. If
a violation of the stateful CFI policy is detected, a fault is triggered, resulting in the
termination of the process.

The ensuing subsections describe the semantics of the ISA extensions and their
interaction with the hardware subsystem. Figure 7.3 illustrates a stateful CFG for
a snippet of code and accompanies Figure 7.4, which depicts the code snippet
beginning at a function entry.
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Figure 7.3 Stateful control-flow graph
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Figure 7.4 Stateful dynamic control-flow graph creation

7.6.2 CFI Instruction Semantics and InstrumentationAU: Please check
circled references
carefully. Alongside Figure 7.3, we use Figure 7.4 as an example to highlight the stateful

CFI instruction semantics and their interaction with the LSR and LSS. In the code
snippet, the process begins execution at the prologue of fn_a, labeled ©1 . Control
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Table 7.1 Additions to the Instruction Set Architecture

Instruction Syntax Semantics

cfibr cfibr lbl Push lbl to top of LSS, flagging a call site as
currently active. Unique cfibr lbl issued per
call.

cfiret cfiret lbl Pop and compare lbl with label at the top of the
LSS (returns only). Must be issued on valid return
sites.

cfiprj cfiprj lbl Store lbl in the LSR, flagging intended jump
target for subsequent check. Must precede
indirect jump instruction.

cfiprc cfiprc lbl Store lbl in the LSR, flagging indended call
target for subsequent check. Must precede
call instructions and indirect tail call jump
instructions.

cfichk cfichk lbl Compare lbl with value stored in the LSR. A
mismatch results in a control-flow violation,
triggering a fault. Must be issued in targets of
indirect jumps or function entries.

flow is transferred to fn_b along ©2 and returns to fn_a along ©3 . An indirect jump
into a jump table is then made in fn_a along ©4 . Control flow is then transferred to
fn_q through a trampoline along ©5 and ©6 , which returns to fn_a through ©7 . Aside
from the trampoline, the execution path is one that may be normally encountered
in an arbitrary program.

Both forward and backward edges on a stateful CFG must be checked by the CFI
policy during code execution. To aid this process while reducing execution over-
head, we introduce five instructions extending the ISA. Table 7.1 lists our newly
added instructions. Integral to the functionality of the system are the placement
and semantics of the CFI instructions, as these aid in the construction and encod-
ing of the stateful CFG.

cfibr Instruction. The cfibr instruction is issued before every call. Predicated
with a label, the instruction pushes its label to the top of the LSS, thereby flagging
the call site as active and adding a new state in execution to the stateful CFG.
For instance, in Figure 7.4, the cfibr instructions in function fn_a push their
accompanying labels onto the LSS. This is illustrated prior to calling fn_b, where
cfibr A1 pushes the label A1 onto the stack. In the program’s CFG shown in
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Figure 7.3, this is equivalent to encoding state S1. On any call, a new label is added
into the LSS, flagging a new call site as active and setting the new execution state.
For a recursive function, if the last pushed label matches the label of the currently
executing cfibr, a per label counter is incremented instead of pushing a new label
into the LSS. This aids with reducing hardware overhead in the LSS memory.

cfiret Instruction. The cfiret instruction is issued after every call site and is
predicated with a label. This label matches the label given by the cfibr preced-
ing the indirect call instruction. In Figure 7.4, the call to fn_b is instrumented with
a cfibr A1/cfiret A1, which encodes state S1 in Figure 7.3. When a cfiret in-
struction is executed, the accompanying label is checked against the value on the
top of the LSS. This evaluates the backward edge of the function, ensuring that the
state of execution has been maintained during the return.

Instrumenting each instruction after every call site with a unique label elim-
inates granularity by removing erroneous edges E. For instance, the state S2 in
Figure 7.3 is not a valid state for N5, or equivalently, cfiret A2 is not a valid re-
turn target for fn_b. Furthermore, the hardware CFI subsystem enforces that a
backward edge must target a cfiret instruction. Our design allows us to limit the
number of return targets to only the last active call site. After a return target label
has been validated, it is popped from the top of the LSS.

The functions setjmp() and longjmp() are cases using non-local gotos and
would raise a false positive if instrumented using cfibr lbl/cfiret lbl instruc-
tion pairs. We did not include specific support for these functions; however, we
could easily design two separate CFI instructions and simply introduce a new CFI
register. One of these instructions would store the current LSS pointer into the
newly added CFI register. This instruction would be issued as part of the setjmp()
function. During execution of the longjmp() instruction, the register would be
written to the LSS pointer using the other instruction, thus unwinding the LSS.

cfiprc and cfiprj Instructions. The cfiprc and cfiprj instructions are issued
before any call or indirect jump instruction, including tail call jumps. The instruc-
tion is predicated with a label representing the valid branch target. This label is
stored in the LSR and subsequently checked after branching to a cfichk instruc-
tion. This ensures that only valid members of the node’s ≯(Ni) can be targeted.
Only valid targets as determined by the CFG are encoded with matching labels.
Following the example in Figure 7.4, prior to calling function fn_b, the cfiprc B

instruction stores label B in the LSR. A check is performed once the branch exe-
cutes and reaches the cfichk B instruction. The jump table in fn_a is validated in
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a similar fashion, with the cfiprj C saving the label in the LSR and subsequent
jump targets containing the corresponding cfichk C instruction. A mismatch in
labels or the presence of any instruction other than cfichk results in a violation of
control flow, and a fault is triggered.

cfichk Instruction. The cfichk instruction is issued at every function entry or
indirect jump target. Predicated with a label, it checks the value stored in the
LSR and performs a comparison with its predicate. This validates forward edges,
which are restricted to targeting cfichk instructions. For instance, in Figure 7.4,
when function fn_a calls fn_b, its forward-edge state is encoded as label B and
captured by the LSR. The cfichk B encoding maps fn_b as a valid target for N1,
where ≯(N1) = N5. Upon executing the cfichk B instruction, its label is matched
against the current label stored in the LSR. Subsequent cfichk instructions are
similarly handled.

Trampolines. A challenge with cfiprc and cfichk instructions is differenti-
ating edges in divergent nodes that point to a convergent node. Consider the
case where two divergent nodes resulting from indirect calls Na and Nb with
different ≯-functions target one common converging node Nc. That is to say,AU: Please check

the second
sentence. Ok?

Nc ∈ ≯(Na) ∩ ≯(Nb) and ≯(Na) �= ≯(Nb). Instrumenting code alone with matching
labels incfiprc/cfichk to verify the edge would necessarily require instrumenting
all target nodes in ≯(Na) ∪ ≯(Nb) to share the same label. This results in breaking
the inequality between both ≯-functions, effectively introducing erroneous edges
in the CFG and therefore granularity. To preserve precision in the stateful CFG,
trampolines are added to serve as unique bridges between these converging edges.
Trampolines are instrumented with a cfichk instruction and a direct jump into
the target function’s body, bypassing the function’s cfichk instruction. This in-
strumentation is illustrated in Figure 7.4, where function fn_q is assumed to be
the target of multiple indirect calls. A trampoline _tr_a_q is added to serve as the
indirect call target, thus precisely validating the function call.

7.6.3 Runtime Environment
A modified runtime envinronment is needed to support both CFI-instrumented and
non-CFI-instrumented software. As such, a mechanism is needed to track all CFI-
instrumented processes and inform the hardware. Figure 7.5 shows a high-level
overview of the software stack.

As the figure illustrates, the operating system kernel is capable of handling
both CFI and non-CFI processes. This is accomplished by modifying the process
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Figure 7.5 Software stack

control block in the operating system kernel to track CFI processes and signal
the underlying hardware when a CFI process is scheduled. A custom CFI loader is
added and utilized by CFI-instrumented software, which utilizes the kernel’s syscall
interface to activate CFI protection for the software in question.

7.6.4 CFI Hardware Infrastructure
As depicted in Figure 7.4, when the CFI-instrumented program executes, the newly
added instructions control read/write operations on the LSR and LSS. However, to
check that the CFI semantics are being precisely followed, we must supervise their
execution. We propose a CFI finite-state machine (FSM) that supervises execution
using the CFI instructions as input.

The primary design requirement for our dedicated CFI hardware infrastructure
is to losslessly enforce any CFG with which we are provided and to efficiently enforce
diverse CFI policies. Our platform does not constrict execution to a particular CFG
or CFI policy. Instead, we propose a scalable, transparent subsystem capable of
enforcing various CFG granularities, from precise to coarse. In this way, the vendor
may choose the level of protection as determined by the security requirements of
the application. Our hardware performs the necessary checks regardless of CFG
coverage. The hardware will build a stateful CFG dynamically and enforce it based
on the information provided during execution. It does so by recording the valid
members for forward edges on the label state register and the valid backward edges
on the label state stack.

It is necessary to maintain an LSS to tightly couple caller/callee pairs in order
to ensure only the most recently executed forward edge is returned to. The LSR
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records forward edges separate from the label state stack to handle false positives.
For example, consider the jump table instrumented with precise, stateful CFI
instructions in Figure 7.4, where the indirect jump stores its label C on the top
of the label state stack. Upon reaching a valid cfichk C instruction, the label at
the top of the LSS would be popped and matched. However, if fall-through were to
occur, the next cfichk C instruction executed would similarly pop the label stored
on the top of the LSS to be checked. This would of course trigger an error in our
system, as the labels being checked would not match. It is therefore necessary to
maintain separate forward- and backward-edge label state storage elements.

Label State Register. The LSR is a dedicated n-bit register accessible only by
cfiprc/j and cfichk instructions. A cfiprc/j lbl triggers a write to the LSR.
A cfichk lbl triggers a read from the LSR. The instruction label encodes valid tar-
gets as determined by the CFG for forward edges. Depicted in Figure 7.3, the valid
forward-edge members are ≯(N1) = N5, ≯(N2) = N3, ≯(N3) = N6, and ≯(N6) = N7.
These correspond to transitions ©2 , ©4 , ©5 , and ©6 , respectively, in Figure 7.4.

Label State Stack. The LSS is a dedicated n × m last-in-first-out buffer accessi-
ble only by cfibr and cfiret instructions. A cfibr lbl pushes the label to
the top of the LSS. A cfiret lbl pops the label from the top of the LSS. The
cfibr lbl/cfiret lbl pair encodes and checks stateful backward-edge targets.
Backward edges are restricted to targeting valid members of the ≯(Ni) function
based on the state obtained from a member of the �(Nj ) function. Depicted in
Figure 7.3, these states are S1 and S2. These correspond to transitions ©3 and ©7 ,
respectively, in Figure 7.4. The depth of the LSS should be chosen to limit the
occurence of overflowing the LSS when encountering nested functions. If an LSS
overflow is detected, the contents may be written to a protected region of memory.

CFI Finite-State Machine. The CFI finite-state machine (FSM) is shown in Figure 7.6
and executes in parallel to the instruction commit stage of the processor. Placement
in the pipeline at the commit stage ensures that the FSM follows the precise CPU
state, i.e., all earlier exceptions/interrupts have been handled before performing
CFI operations. Each transition in the FSM requires a single cycle, so the FSM state
is synchronized with in-order program execution.

The initial state of the FSM assumes an arbitrary point in program execution. If
the program is CFI enabled, then transitions in the FSM will occur upon encounter-
ing CFI instructions only after being notified by the OS if the process is CFI enabled.
Otherwise, the FSM will remain in the initial state for the process’s lifetime. Non-
CFI instructions return the current FSM state to its initial state. If either cfibr
or cfiprc/j are executed, then the FSM transitions to state LSS or state LSR, re-
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spectively. This is functionally equivalent to a write because the semantics of both
cfibr and cfiprc/j are to update the current label state. The state transitions to
CFI check if either cfiret and cfichk instructions are executed. This is function-
ally equivalent to a read and compare because the semantics of both cfiret and
cfichk is to check the current label state. If the label state check is validated, then
the FSM state returns to the execution state; otherwise an exception is triggered.

Note that if the vendor provides any CFG then we losslessly enforce it. If in
Figure 7.4 all cfibr labels match, or the labels at cfichk for fn_b and fn_q are
grouped into an equivalence class, then the CFI FSM will not trigger an exception
because the label state check will pass.

The CFI FSM generates control signals for reading from and writing to the LSS
or LSR. It also monitors valid CFI transitions as determined by the stateful CFI se-
mantics at runtime against the dynamically built CFG. Violations are detected if the
intended execution flow, as given by the CFG, is not precisely executed. We group
these violations into execution-flow and logic-flow violations. Any invalid transition
in the FSM is considered a violation of execution flow. If a call/jump is executed,
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then a cfichk must be targeted. Similarly, a return must target a cfiret. In addi-
tion, every call/jump instruction must be prefixed with a cfiprc/j instruction, and
every call with cfibr. Logic-flow violations occur when an invalid label is encoun-
tered in either the LSS or LSR. For example, in Figure 7.4, if transition ©2 targets
cfichk Q rather than cfichk B, then a logic-flow violation will be triggered.

7.7 Security Evaluation

7.7.1 Security Objectives and Requirements
The main goal of our hardware-enhanced CFI platform is to prevent code-reuse
attacks. We must prevent runtime exploits that leverage either invalid backward
edges, forward edges, or full functions. These include attacks that corrupt return
addresses [Shacham 2007, Davi et al. 2014, Göktas et al. 2014a], corrupt code point-
ers used in indirect calls/jumps [Checkoway et al. 2010, Checkoway and ShachamAU: Please

check the third
sentence. Ok? 2010, Carlini and Wagner 2014], or reuse entire functions [Schuster et al. 2015,

Tran et al. 2011]. Finally, we must prevent runtime attacks that bypass CFI while
adhering to its policies [Carlini et al. 2015e].

For our security discussion, we consider the adversary model and assumptions
mentioned in Section 7.2. In particular, we assume that the application under
protection has been provided with a precise CFG, and that the application has been
instrumented with precise, stateful CFI instructions, as described in Section 7.6.2.
We do not address the security of our hardware-enhanced CFI if given a coarse CFG.

7.7.2 Backward-Edge Code-Reuse Attacks
Conventional return-oriented programming attacks use backward edges (returns)
to combine code sequences (gadgets) residing in the executable address space
of an application to perform malicious actions. Traditionally, a memory write
vulnerability is exploited allowing the attacker to inject a ROP payload, which is
typically a number of return addresses each pointing to a gadget terminating in a
return instruction [Shacham 2007]. Gadgets can be located at any arbitrary location
in the application’s program space. Recent ROP attacks [Davi et al. 2014, Göktas
et al. 2014a] target only call-preceded code sequences, where a call-preceded code
sequence is any instruction following a call.

Our hardware-enhanced CFI prevents backward-edge runtime attacks as de-
scribed above, and in general, because they require redirection to invalid call-
preceded instructions or arbitrary code locations. This is in direct violation of pre-
cise state preservation. Each call instruction is instrumented with a unique label
that encodes the execution path’s state information with a cfibr lbl/cfiret lbl
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fn_a:
...

cfibr A1
cfichk B1
call fn_vul
cfiret A1
...
...

cfibr A2
cfichk B1
call fn_vul
cfiret A2
...

fn_vul:
cfichk B1
...
...

ret

B1

A1
...

LSR

Valid
Invalid

LSS

① B1

...

...

② B1

A2
...

③ B1

...

...

④ B1

...

...

⑤

①

②

③

④

⑤

Figure 7.7 Illustrative backward-edge code-reuse attack.

instruction pair. A return instruction is only allowed to target a cfiret instruction
if it is the most recent in the execution path history, i.e., it is a valid state. This is
determined by checking the label at the top of the LSS against the cfiret lbl at
the return target. Only cfiret instructions may be targeted by returns.

We use Figure 7.7 to discuss how our security requirements are fulfilled for run-
time exploits that leverage these invalid backward edges. In Figure 7.7 we depict
a function fn_a that consists of two direct function calls to fn_vul. The function
fn_vul suffers from a memory corruption vulnerability that an attacker can exploit
to corrupt a return address. Without CFI enforcement, the attacker can manipulate
the return address to target any other instruction inside the program memory. How-
ever, in our CFI model, the return instruction must target the original caller. Our
CFI state model also prevents an attacker from redirecting the control flow to a
valid but currently inactive return place for fn_vul. As an example, assume an at-
tacker attempts to redirect the control flow on edge ©5 . Since the valid return target,
transition ©4 , is given by the precise state of control flow, an attacker is unable to
exploit this backward edge. As described in Section 7.5.4, a return needs to target
the most recent forward-edge transition. In our hardware-enhanced CFI, we encode
the most recent forward-edge transition as a cfibr A2/cfiret A2 instruction pair.
We enforce precise, stateful CFI by pushing the label A2 to the top of the LSS prior
to any call and constraining the callee to returning to a cfiret instruction with a
matching label.
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7.7.3 Forward-Edge Code-Reuse Attacks
There are several variants of forward-edge runtime attacks, which typically use
a corrupted code pointer to redirect control flow when dereferenced by an indi-
rect call/jump. Jump-oriented programming attacks [Checkoway et al. 2010] use a
dispatcher gadget, which acts as a virtual program counter (PC), to advance con-
trol flow through a dispatch table containing attacker-controlled addresses point-
ing to gadgets. These gadgets, rather than terminating with a return instruction,
terminate with either an indirect call or jump instruction. Control is redirected
back into the dispatcher to branch to the next gadget. ROP-without-return at-
tacks [Checkoway and Shacham 2010] require a trampoline gadget that acts as a
virtual PC to redirect control flow into gadgets terminating in an indirect call/jump.
(Note that “trampoline” in Checkoway and Shacham [2010] has a different meaning
than our usage.) Each terminating indirect call/jump instruction is used to point
back into a trampoline wherein control flow can again be maliciously redirected.
Variants of forward-edge runtime attacks exclusively target function entries [Göktas
et al. 2014a, Carlini and Wagner 2014]. Typically, these are code sequences begin-
ning at a function entry and terminating with an indirect call/jump.

Our hardware-enhanced CFI prevents forward-edge runtime attacks as de-
scribed above, and in general, because they rely on either redirecting control flow
to an invalid member or an arbitrary code location. Only valid indirect call/jump
targets are allowed as given by their CFG members, per Section 7.5.2. This prevents
the attacker from redirecting control flow to arbitrary locations in the applica-
tion’s progam space. Each benign call/jump target is instrumented with a cfipr*

lbl/cfichk lbl pair that encodes its intended, benign target members. Redirec-
tion to an invalid member is prevented because its cfichk lbl state label encoding
will not match the cfipr* lbl label in the LSR. Redirection to an arbitrary location
in the application’s code space will not target cfichk instructions.

We use Figure 7.8 to discuss how our security requirements are fulfilled for
runtime exploits that leverage invalid forward edges. Within Figure 7.8 we depict
a vulnerable function fn_vuln attempting to exploit a corrupted code pointer to
redirect control flow, ©3 and ©4 . The vulnerable function suffers from a memory
vulnerability that allows the attacker to exploit a corrupted code pointer. Without
CFI enforcement, the attacker can manipulate the code pointer to target either fn_
d or an arbitrary location in fn_e. Our hardware-enhanced CFI prevents attackers
from targeting invalid code locations via indirect calls/jumps. In our system, the
valid targets for the indirect call/jump instructions are given by its valid members
≯(Ni) per its precise CFG. For example, valid members for the indirect call in the
vulnerable function are encoded with the cfiprc B1/cfichk B1 instruction pair.
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fn_vuln:
...

cfibr A1
cfiprc B1
call *reg
cfiret A1
...

fn_c:
cfichk B1
...

call *reg

fn_d:
cfichk C1
...
...

fn_e:
insn
...
...

fn_b:
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...
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Figure 7.8 Illustrative forward-edge code-reuse attack.

We enforce precise, stateful CFI by storing the label B1 to the LSR prior to executing
the indirect call and checking that its target cfichk B1 label matches. Only valid
members, as given by the CFG, are encoded with matching labels.

Note that our hardware-enhanced CFI architecture also includes protection
against dynamic code-reuse attacks, i.e., attacks such as JIT-ROP that dynamically
determine gadgets on executable memory pages [Snow et al. 2013]. These attacks
exploit backward and forward edges that we instrument with CFI checks based on
the program’s CFG.

7.7.4 Full-Function Code-Reuse Attacks
Conventional full-function reuse attacks use corrupted code pointers, along with
attacker-controlled function arguments, to redirect control flow through a chain
of existing libc functions [Solar Designer 1997a, Wojtczuk 1998, Solar Designer
1997b, Nergal 2001].
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In a recent paper, Tran et al. [2011] were able to extend conventional Return-
into-Libc (RILC) by demonstrating Turing-Complete RILC. Variants of full-function
reuse attacks create counterfeit objects and fake virtual table pointers to redirect
control flow to existing virtual methods in C++ programs [Schuster et al. 2015].

Our hardware-enhanced CFI prevents full-function reuse attacks because they
rely on redirecting control flow to invalid indirect call/jump targets. Valid branch
targets are instrumented with cfipr* lbl/cfichk lbl pairs. Only benign control-
flow targets are encoded with matching labels. Redirection to an invalid control-
flow target is prevented by checking that the label currently in the LSR matches the
cfichk lbl label.

We use Figure 7.8 again to discuss how our security requirements are fulfilled
for runtime exploits that leverage full functions. Within Figure 7.8 we depict a
vulnerable function where the attacker may corrupt a code pointer and use it to
redirect control flow to a function entry fn_d, ©3 . Without CFI enforcement, the
attacker can freely manipulate the code pointer vulnerability to target any function
entry in the executable address space of the application. Our hardware-enhanced
CFI prevents attackers from targeting invalid functions. Valid functions are given by
the precise CFG as a set of valid members ≯(Ni). For example, valid members for the
indirect call in fn_vuln are encoded with the cfiprc B1/cfichk B1 instruction
pair. We enforce precise, stateful CFI by storing the label B1 to the LSR prior to
executing the indirect call. We check that its targeted cfichk lbl label matches
what is currently stored in the LSR. Only valid members, as given by the CFG, are
encoded with matching labels.

Note that COOP attacks can be prevented in our design if the class hierarchy is
correctly and precisely covered in the CFG. For instance, Google compiler exten-
sions can be leveraged to extract such precise CFG information [Tice et al. 2014].

7.7.5 Control-Flow Bending
A recent attack [Carlini et al. 2015e], called Control-Flow Bending (CFB), demon-
strates code-reuse attacks are possible while adhering to fully precise static CFI.
In a CFB attack, attackers may corrupt a code pointer to call a valid function en-
try where a vulnerability exists, allowing it to corrupt a return address. They then
may use the corrupted return address to return to any call-preceded site. In particu-
lar, CFB exploits any function with a vulnerability that can overwrite its own return
address and adheres to CFI by returning to any location where this function was
called.

Our hardware-enhanced CFI prevents CFB attacks because it requires redi-
rection to any call-preceded slot in a stateless CFI-protected system. We offer
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precise, stateful CFI so that only the most recently executed forward-edge tran-
sition may be returned to. As described above, this is ensured with a unique
cfibr lbl/cfiret lbl instruction pair. A return instruction is only allowed to
target a call-preceded slot if it is the most recent in the execution path history.
Using Figure 7.7, the invalid return ©5 is prevented from returning to cfiret A1

because it is not the most recent call-preceded slot.

7.7.6 Security of Label State Stack/Register
Even though it is not a strict security requirement, our design only allows CFI
instructions to access the LSS and LSR and avoids CFI data being loaded to main
memory. Recall the recent CFI attack that corrupts offset pointers referencing a
CFI jump table spilled to the program’s stack for efficiency reasons [Liebchen et al.
2015]. We prevent this attack, and similar attacks that corrupt or disclose CFI data,
by storing CFI-related data, such as labels, in a dedicated memory, LSS, and LSR.

7.8 Performance Evaluation
To evaluate the support of our hardware-enhanced CFI protection, we generated
custom build tools, a custom runtime environment, and custom hardware infras-
tructure. This enabled us to (i) issue newly added CFI instructions in proper code
locations, (ii) create unique CFI labels for any arbitrary application, and (iii) support
CFI services within a rich OS environment on a hardware platform.

7.8.1 Build Tools
A set of modified build tools are needed in order to issue the necessary CFI instruc-
tions in the proper places. As such, in order to test the performance of our system,
we developed an instrumented toolchain based on the GNU Compiler Collection
(gcc) version 4.9.2, the GNU Binary Utilities (binutils) version 2.23 and μClibc
(uClibc) version 0.9.33.2.

The compiler, gcc, was made to issue the cfibr and cfiprc instructions before
any function call, with a corresponding cfiret instruction at the return site. Simi-
larly, a cfiprj was issued before indirect jumps with a cfichk at function entries
and at indirect jump targets. The assembler, gas, was modified to recognize these
new instructions and emit the necessary machine code. As the C library, uClibc, is
built by the compiler, only those routines written in assembly need to be manually
instrumented; the others can be directly compiled without issue.

For testing and CFG instrumentation purposes, we wrote an IDA Pro plugin that
extends the SPARC processor module bundled with the program. This enabled us to
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automatically instrument backward edges in our binary. Forward edges for indirect
jumps were instrumented by manually extracting jump table information from the
binary and feeding this information to the plugin. For indirect calls, a new section
with trampolines was added to the binary at compile time using a custom linker
script. The trampoline was instrumented with the proper check instruction and an
indirect jump to the target function. Using the plugin, indirect calls were rewritten
as direct calls to the proper trampoline. As this instrumentation is equivalent to the
one presented in section 7.6.2, it is sufficient for performance-testing purposes. We
should stress, however, that this chapter does not present a general solution to CFG
generation and limits itself to providing a mechanism that can be used with manual
analysis to generate an estimate of the CFG of a program.

7.8.2 Hardware Platform
To evaluate the overhead of our CFI implementation on a real system, we inte-
grated it into the open-source LEON3 processor distributed by the European Space
Research and Technology Centre [Gaisler Research 2017]. The LEON3 is a 32-bit
processor that implements the SPARC V8 ISA [SPARC 2017]. The synthesizable
LEON3 core is equipped with a 7-stage pipeline, separate instruction and data
caches, memory management unit, hardware floating-point units, AMBA 2.0 AHB
bus, and on-chip debug support.

Modifications were made to the processor pipeline to incorporate the CFI FSM,
LSR, and LSS in the iu3.vhd module. The modified processor is implemented on
the Xilinx Spartan-6 FPGA evaluation board. The FSM, LSR, and LSS are placed in
parallel to the write-back stage of the LEON3 pipeline. Their operations include
read/write access to the LSS/LSR and FSM operations, which are synchronized with
the write-back stage so that they do not stall the pipeline. Our CFI instructions are
decoded as nop instructions on the pipeline, which ensures single-cycle latency as
determined by the SPARC V8 ISA [SPARC 2017].

7.8.3 Hardware-Enhanced CFI Evaluation Results
7.8.3.1 Performance

For the evaluation of our hardware-enhanced CFI, we used the industrial stan-
dard EEMBC’s CoreMark benchmark suite [EEMBC 2017]. This benchmark suite
is designed to test a processor core’s functionality, namely, its pipeline, memory
access, and functional unit operations. It is made up of small C programs con-
taining read/write, integer, and control operations whose workload models several
commonly used algorithms, e.g., matrix manipulation, linked-list manipulation,
state-machine operation, and cycle redundancy check [EEMBC 2017]. This suite
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covers usage of code pointers and frequent conditional/unconditional branching,
which provides a representative class of CFI-instrumented code coverage and per-
formance overhead comparison.

CoreMark programs are instrumented with precise, stateful CFI instructions.
We follow the instrumentation described in Section 7.6.2 using our build tools.

We also evaluated several SPECInt2006 benchmarks, namely, bzip2, libquan-
tum, and h264ref. These are representative example programs from the group of
business, scientific, and problem-solving workloads. We did not evaluate full SPEC
because of resource constraints on the FPGA evaluation board. The FPGA board
provides 128 MiB of main memory, whereas full SPEC requires at least 1 GiB. Each
of the programs evaluated could be run within the memory constraints imposed by
the FPGA platform. Additionally, porting full SPEC2006 would require significant
engineering effort in resolving all dependencies. The benchmarks we evaluated
offered a reasonable trade-off in build time and coverage.

SPEC benchmarks are also instrumented with precise, stateful CFI instructions.
We again follow the instrumentation described in Section 7.6.2 using our build
tools.

The results are shown in Figure 7.9, where the performance overhead on aver-
age is 1.75%, with a worst-case overhead of 3.5% for SPEC benchmarks and 0.5%
for CoreMark. The average code size overhead is 13.5% across both SPEC and Core-
Mark. We should note that this overhead is directly related to the number of calls
and indirect jumps in the binaries. As more calls and indirect jumps are contained
in the program, more CFI instructions need to be issued.
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Figure 7.9 Normalized benchmark results.
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Table 7.2 Evaluation of Area Overhead with CFI Implemented on a LEON3 ProcessorAU: What does
“Comb.” stand
for? LEON3 LEON3 CFI Percent Change

Comb. 8,759.073 8,996.952 2.72

Sequential 16,921.416 17,143.284 1.31

Total 25,680.589 26,140.236 1.78

7.8.3.2 Area and Timing Overhead
We integrated the micro-architectural features to support our hardware-enhanced
CFI design elements, as outlined in Section 7.6.4 into the 7-stage pipeline of the
LEON3 processor. Our hardware-enhanced CFI LEON3 core was synthesized with
Design Compiler H-2013.03-SP5-3 using the Synopsys 32/28 nm generic library,
a teaching library created for micro-electronic design education. We evaluated
both area overhead and maximum clock rate. In general, smaller area ensures
better resource usage and lower cost requirements. A faster clock ensures our
hardware will not be on the critical path or violate existing timing constraints.
Table 7.2 displays the area overhead caused by extending the pipeline with full CFI
protection. The total area overhead seen is negligible at 1.78%. We also evaluated
the maximum frequency at which our CFI FSM, LSS, and LSR implementation could
be clocked. Our hardware-enhanced CFI could be clocked up to 3 GHz without
incurring timing violations.

7.9 Related Work
CFI defenses have been proposed to prevent code-reuse attacks [Abadi et al. 2009,
Budiu et al. 2006, Wang and Jiang 2010, Davi et al. 2012, Zhang and Sekar 2013,
Zhang et al. 2013, Bletsch et al. 2011, Tice et al. 2014, Arias et al. 2015]. In their
seminal work on CFI, Abadi et al. [2009] propose a label-based mechanism. In par-
ticular, indirect branch targets are marked with unique labels. Before an indirect
branch, CFI validates whether the branch targets a pre-defined label. Whereas the
original CFI proposal targeted applications running on an x86-based desktop PC,
CFI has been also adapted to mobile applications [Davi et al. 2012] and hypervi-
sor code [Wang and Jiang 2010]. Unfortunately, software-based instrumentation
induces too high performance penalties. Even a recent implementation utilizing
an optimized shadow stack [Dang et al. 2015] adds significantly more performance
overhead than our hardware-based CFI implementation and still leaves the shadow
stack unprotected in main memory.
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A number of coarse-grained CFI approaches aim at tackling the performance
overhead. Several solutions build on behavioral-based heuristics to detect (i) the
execution of short instruction sequences [Pappas et al. 2013, Cheng et al. 2014] or
(ii) indirect branch counters [Yao et al. 2013, Kayaalp et al. 2013]. Other CFI schemes
relax the CFI policies, most notably, they force returns to target any call site [Zhang
and Sekar 2013, Zhang et al. 2013, Bletsch et al. 2011, Pappas et al. 2013]. However,
a number of recent attacks against CFI demonstrate that neither behavioral-based
heuristics nor relaxed CFI policies withstand advanced code-reuse attacks [Göktaş
et al. 2014b, Davi et al. 2014, Carlini and Wagner 2014, Schuster et al. 2014]. In
contrast, our hardware-based CFI scheme allows for finer-grained policies that
resist these latest attacks, while being highly efficient.

Architectural fine-grained CFI support, as proposed by Budiu et al. [2006], in-
troduced hardware support for fine-grained CFI protection via integrity checking
of control-flow graph encoding. For forward-edge protection, Budiu et al. [2006]
leverage a CFI label register similar to our LSR. However, for backward-edge pro-
tection, they assume a shadow stack, which incurs more performance overhead
compared to our LSS. Similarly, Davi et al. [Davi et al. 2014, Arias et al. 2015] in-
troduce hardware-assisted CFI instructions but focus only on CFI backward edges
and bare metal code. In contrast to previous work on hardware-assisted CFI [Budiu
et al. 2006, Davi et al. 2014, Arias et al. 2015], we support highly efficient CFI for
shared libraries, multitasking, and support of legacy code [Sullivan et al. 2016].

Control-Flow Locking (CFL), as proposed by Bletsch et al. [2011], prevents CRAs
by asserting a lock value before executing each indirect control-flow instruction,
and de-asserting it upon entry into a valid destination. However, CFL checking is
on the critical path, and applications with a larger number of control-flow instruc-
tions, such as XML parsers and interpreters, will suffer significant performance
degradation. Compared with our approach, we can offer the same protection but
in a very efficient way.

Branch regulation [Kayaalp et al. 2012] is a hardware-assisted CFI approach that
restrains control-flow behavior dynamically. Indirect branches are forced to target
function entries or function bounds, and a return should target a call-preceded in-
struction. A Secure Call Stack (SCS) is implemented to restrict backward-edge CFI,
and each stack entry is augmented with function bounds to support forward-edge
CFI. This approach shares many similarities with ours but fails to handle dynam-
ically linked libraries, stack unwinding, tail call optimization, and compatibility
with non-CFI-instrumented programs. In contrast, our approach does not need
knowledge of function bounds to enforce a policy, as this is determined via the
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CFI label. Branch regulation requires the storage of bounds data to be included in
the program executable.

Onarlioglu et al. [2010] eliminate unaligned indirect control-flow instructions
from a program with the insertion of nop sleds. The remaining indirect control-
flow instructions are then secured by enforcing that they can only be executed by
means of an aligned entry. Return address encryption is implemented to prevent
backward-edge CRAs. In addition, per-function cookies are used to constrain indi-
rect jumps to the function’s bounds. This approach reports a large increase in both
binary file size and performance overhead.

7.10 Conclusion
Within this chapter we present the formal underpinnings of a precise stateful CFI
policy, which enabled the design and implementation of a lossless, scalable, and
highly efficient hardware-enhanced CFI platform. The new framework leverages
dedicated CFI instructions to losslessly enforce any CFG and diverse CFI policies
within our model. Our hardware-enhanced CFI significantly lowers the perfor-
mance overhead when applied to several SPECInt2006 and CoreMark benchmarks.
Further, if provided with a precise CFG we show comprehensive protection from
many traditional and recently proposed code-reuse attacks. The goal of our work is
the design and implementation of a hardware-enhanced CFI framework that can
losslessly support CFI policies with varying precision. Generation of precise CFGs
for real-world applications remains an open challenge.
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