i o
(%] o

\ [ -
Policy Agnostic ¢ontroI-FI0\év Integrity -

", Dean Sullivan Orlando Arias 1
1 ' U'|'1iv'er'sity of Central *  University of Central i
Florida Florida -
il s ¥ 3] B
Ahmad-Reza Lucas Davis Yier Jinm .
Sadegh| , Technische Universitit . University of Central® ¥
Darmstadt, - ' Florida,

Technische Universitat™ ==

Intel Collaborative Research , Cyber Immunity Lab "
Darmstadt, -
) Institute for Secure  n
Intel C*I.Iaboratlve Research Computing, Germany v ;o :
Institute for Secure - o il
8 i '
Computing, Germany™ - N
1] ] | ] I I l. 1
&

e m i s P | b



Motivation

RROMEG]




Three Decades of Runtime Attacks

return-into- Return-oriented
Morris Worm libc programming Continuing Arms
1988 Solar Designer Shacham
1997 CCS 2007

Borrowed
Code Chunk
Exploitation

Krahmer

2005

Code
Injection
AlephOne
1996




Recent Attacks

Attacks on Tor Browser [2013]

FBI Admits It Controlled Tor Servers
Behind Mass Malware Attack.

Cisco Router Exploit [2016]

Million CISCO ASA Firewalls potentially
vulnerable to attacks

Stagefright [Drake, BlackHat 2015]

These issues in Stagefright code critically
expose 95% of Android devices, an
estimated 950 million devices

g—

Adversary

)

The Million Dollar Dissident [2016]

Government targeted human rights
defender with a chain of zero-day exploits
to infect his iPhone with spyware.

Adversary




Relevance and Impact

High Impact of Attacks

e Web browsers repeatedly exploited in pwn2own contests
e Zero-day issues exploited in Stuxnet/Duqu [Microsoft, BH 2012]

e iOS jailbreak

4 A Can either be bypassed, or may not
\ A/ be sufficiently effective
& [Davi et al, Blackhat2014], [Liebchen et al CCS2015],

[Schuster, et al S&P2015]

Hot Topic of Research

e Alarge body of recent literature on attacks and defenses



Runtime Attacks & Defenses:
Continuing Arms Race

A & Still seeking practical and

vVy

P secure solutions
SafeDispatch, MoCFl, ROP wo Returns,
RockJIT, TVip, Out-of-Control,
StackArmor, CPI/CPS, Stitching the
Oxymoron, XnR, Gadgets, SROP, JIT-
Isomeron, ROP, BlindROP,
O-CFI, COOP, StackDefiler,
Readactor, "Missing the

HAFIX, point(er)"



The whole story .....




Runtime Attacks
Code-Injection Attack Code-Reuse Attack

Basic Blocks (BBL)

Entry: instruction target of a branch
(e.g., first instruction of a function)

Exit: Any branch

(e.g., indirect or direct jump/call, return)

corrupt code
pointer

D E P ject malicious \'j“\

code
Adversary Data flow

Program flow

corrupt code pointer

Data Execution Prevention



Return-oriented Programing (ROP):
Prominent Code-Reuse Attack

4 & ROI.J shown to be
vV Turing-complete
P

ﬁéﬁ ENIGMA




ROP: Basic Ideas/Steps

Use small instruction sequences instead of whole
functions

Instruction sequences have length 2 to 5

All sequences end with a return instruction, or an
indirect jump/call

Instruction sequences chained together as gadgets

Gadget perform particular task, e.g., load, store,
Xor, or branch

Attacks launched by combining gadgets
Generalization of return-to-libc



Threat Model: Code-reuse Attacks

Application

Writable @ Executable

Opaque Memory Layout

Disclose readable Memory
Manipulate writable Memory

Computing Engine



Main Defenses against Code Reuse

1. Code Randomization

2. Control-Flow Integrity (CFl)

“,

L

. \ /
\--_u
-
L ks
2 T \
e \
p




Randomization vs. CFI

Information Disclosure Tradeoff:
hard to prevent Performance & Security

Challenging to integrate

High entropy required in complex software,
coverage




EPISODE |

Code Randomization
Make gadgets locations unpredictable




Fine-Grained ASLR

Application Run 1 Application Run 2

BT s i

Library (e.g., libc)

* Instruction reordering/substitution within a BBL
ORP [Pappas et al., IEEE S&P 2012]

* Randomizing each instruction’s location:
ILR [Hiser et al., IEEE S&P 2012]

* Permutation of BBLs:
STIR [Wartell et al., CCS 2012] & XIFER [with Davi et al., AsiaCCS 2013]



Randomization: Memory Leakage Problem

e Pointer leakage on code pages
e e.g., direct call and jump instruction

e Pointer leakage on data pages such as stack or heap

e e.g., return addresses, function pointers, pointers in
vTables



JIT-ROP:
Bypassing Randomization via
Direct Memory Disclosure

Just-In-Time Code Reuse:
On the Effectiveness of Fine-Grained Address Space Layout Randomization

IEEE Security and Privacy 2013, and Blackhat 2013

Kevin Z. Snow, Lucas Davi, Alexandra Dmitrienko, Christopher Liebchen,
Fabian Monrose, Ahmad-Reza Sadeghi



Just-In-Time ROP:
Direct Memory Disclosure

G Undermines fine-grained ASLR

Shows memory disclosures are far more
damaging than believed

e Can be instantiated with real-world exploit




Readactor: Towards Resilience to
Memory Disclosure

Readactor:
Practical Code Randomization Resilient to Memory Disclosure
IEEE Security and Privacy 2015

Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, Michael Franz



Code Randomization:
Attack & Defense Techniques

=
)
A A

Attack Timeline
Static Attack +m
Application Morris Worm /

Return to libc [Solar

= randomization

(Fine-grained)
g Randomization - Designer Bugtraq’97]
¥ | D inelonBl ) JustinTime ROP [snowe
disclosure A Isomeron (Attack) [Davi et
Execute-only -_ al. NDSS’15]
- Memory e
‘ < Trampoline
Indirect code ’ R pAtt K
disclosure '* Pointers SHbE ATaE
Register

hiding



Code Randomization:
Attack & Defense Techniques

@
FA
N m Application

IIT Code 's _ Attack Timeline
Attacks . Counterfeit Object-oriented
Same Protection _ Programming (COOP)

? as for AOT Code [Schuster et al. IEEE S&P’15]
Crash-Resistant Oriented
Brute-force 40__, Programming [Gawlik et al.
Attacks on NDSS’16]
Entropy Booby Traps
Terminate Process
a
o Pointers 2
¥ ¥
. -- _<— —— Trampoline
Function Virtual Table Reuse for
Reuse Attacks |

, Attack Surface Single Function
Trampolines & )
Large enough? Pointers

Booby Traps



EPISODE Ii
Control-Flow Integrity (CFl)

Restricting indirect targets
to a pre-defined control-flow graph




Original CFl Label Checking

[Abadi et al., CCS 2005 & TISSEC 2009]
BBL A

ENTRY

asm ins.

B ENTRY
kK asm_ins, ...
EXIT




CFl: CFG Analysis and Coverage Problem

e Conservative “points-to” analysis

e e.g., over-approximate to avoid breaking the program

e Precision of CFG analysis determines security of CFl
policy
® e.g., more precise =2 more secure



Which Instructions to Protect?

Indirect
Jumps

Indirect
Calls




Label Granularity: Trade-Offs (1/2)

+ Many CFIl checks are required if unique labels are
assigned per node

O CFI Check
Exit(B) ==

[Label 3, Label 4, Label 5] ~, _
Q Basic Block

Label 5 Label 6



Label Granularity: Trade-Offs (2/2)

* Optimization step: Merge labels to allow single CFI check

+ However, this allows for unintended control-flow paths
Exit(B) == Label 3 < Label_1

O CFI Check
zS

\ B Label 2
— . Label

Label 3 G @ Label 3

!
e PO @

Label 3 Label 6



Label Problem for Returns

+ Static CFl label checking + Shadow stack allows for
leads to coarse-grained fine-grained return
protection for returns address protection but

incurs higher overhead

Forward-

Edge CFI Backup State

Shadow Stack

Backup storage for
return addresses

Return Addr ...

RET * Backward

-Edge CFI
Exit(R) == [Label_1, Label 2]

Return Addr A’



Forward- vs. Backward-Edge

+ Some CFl schemes consider only forward-edge CFl
+ Google’s VTV and IFCC [Tice et al., USENIX Sec 2015]
+ SAFEDISPATCH [Jang et al., NDSS 2014]
* And many more: TVIP, VTint, vfguard

+ Assumption: Backward-edge CFl through stack
protection

* Problems of stack protections:
+ Stack Canaries: memory disclosure of canary

+ ASLR (base address randomization of stack): memory
disclosure of base address

* Variable reordering (memory disclosure)



StackDefiler
Protecting Stack is Hard!

Losing Control:
On the Effectiveness of Control-Flow Integrity under Stack Attacks
ACM CCS 2015
Christopher Liebchen, Marco Negro, Per Larsen, Lucas Davi, Ahmad-Reza
Sadeghi, Stephen Crane, Mohaned Qunaibit, Michael Franz, Mauro Conti



StackDefiler

e Goal:

e Bypass fine-grained Control-Flow Integrity

e |FCC & VTV (CFl implementations by Google for GCC and
LLVM)

e Approach:

e Due to optimization by compiler critical CFl pointer is
spilled on the stack

e StackDefiler discloses the stack address and overwrites
the spilled CFl pointer

e At restoring of spilled registers a malicious CFl pointer is
used for future CFl checks

* No stack-based vulnerability needed



e , COOP
Stitching the Gadgets IEEE S&P 2015
USENIX Security 2014 Felix Schuster, Thomas Tendyck,

Lucas Davi, Daniel Lehmann, Christopher Liebchen, Lucas Davi,
Ahmad-Reza Sadeghi, Fabian Monrose Ahmad-Reza Sadeghi, Thorsten Holz



Learned

Control-Flow Integrity

1. Too man Out of control Eontrol-FIowBending“:

> Restric . [Goktas et al., [Carlini et al., ydow stack)
| IEEES&P2014] | USENIX Sec.2015]

2. Heuristic¥
Stitching the gadgets | FlowStich

—> Adjuste [Davietal, | [Hu et al., alse positive
USENIX Sec. 2014] J USENIX Sec. 2015]

3. Too man

. l [ROP is stiIIdangerousu Control Jujutsu ..
Resolvi | [Carlini et al., [Evans et al., trivial

I T | USENIXSec.2014] || cCS201S]
[ Sizedoesmatter ||  StackDefiler
[Goktas et al., [Conti et al.,

. USENIX Sec.2014] | | CCS2015]

~ Signal-oriented
Programming (SROP)
[Bosman et al.,

CooP
[Schuster et al.,
 IEEES&P2015] | |



Hardware CFI




Why Leveraging Hardware for CFI ?

— e —

Efficiency Security

Dedicated CFl instructions Isolated CFl storage

CFI_RETURN

CFl Memory
CFl_JUMP

Branch
Targets

CFI_CALL




Why CFIl Processor Support?

CFl Processor Support based on Instruction set
architecture (ISA) extensions

Dedicated CFl instructions
Avoids offline training phase

Instant attack detection

CFl control state:
Binding CFl data to CFl state and instructions




Strategy Without Tactics:
Policy-Agnostic Hardware-Enhanced Control-Flow Integrity
Design Automation Conference (DAC 2016)
Dean Sullivan, Orlando Arias, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Yier Jin



Objectives

Backward-Edge and
Forward-Edge CFl

No burden on developer

Security

High performance

Enabling technology

Compatibility to legacy code

Stateful, CFl policy agnostic

No code annotations/changes

Hardware protection
On-Chip Memory for CFl Data
No unintended sequences

< 3% overhead

All applications can use CFl
features
Support of Multitasking

CFl and non-CFl code on same
platform



HAFIX++ Fine-Grained CFl State Model

enabled



cfibr

cfiret
cfiprc

cfiprj

cfichk

HAFIX++ ISA Extensions

Issued at call site = setup Backward (BW) Edge

Issue at return site = check BW Edge
Issued at call site = setup call target
Issued at jump site = setup jump target

Issued at call/jmp target = check Forward (FW) Edge




Function A

CFIBR /abel A1
CFILSR /abel B

CALL *reg
@ CFIRET /label Al
Code

Function B
CFICHK /abel B

Code
RET

Indirect Call Policy

State 0 CFI State
Normal Execution Only CFl instructions
. Il d
Function A O
CALL *reg CFIBR /abel A1

CFILSR /abel B

Function B

Code CFICHK /abel_B

\

Label State
Stack (LSS)

label Al

RET \ Label State
CFIRET /abel_A1 " | Register (LSR)

\

o



Function Return Policy

Function A State O CFl State
CFIBR /abel A1 Normal Execution Only CFl instructions abelState
CALLB Howed Stack (LSS)
Function A SOE
CFIRET /abel Al
CFIBR /abel A1
Function B Function B

| Code o ‘




HAFIX++ Pipeline

o Convert CFl to NOP
P - _— S _—
Fetch Decode ExXecute Memory Write

\
NOP

Forward CFl to Control Unit

CFI Control Unit CFl Label State
Memory

Label does not match
- Stop Execution (= JI- -

A

| ool MR el
«— — =T

Forwar lqbel to CFI Cog,tro/ Lcjfit to check activity
Label access in dedicated memory

— —— — e — oy



/ Function A (25) \

CFICHK
insn
CFIBR
CFIPRC
CALL

CFIRET
insn
CFIPRJ

jmp
CHEHK

A

Eleri

aco
insn
Wl 1IN

€FPRE

aAr

CALL
CHRET

acAS

insn

RET

Call Function B

= T ,7 T TReturn to Function A

store _@/ Bgp label off st
1 volittate

:@i

|

Label 252 valid
Store Label 31 to LSR

Label State Register
252

Function B (31)

Label 31 valid

Label State Stack
251




Challenges ...




Architectural Issues

e Runtime overhead caused by CFl instrumentation

O Initializing and validating the CFl state upon every FW/BW edge
O I-cache pressure during instruction fetch
O Effective CPI

e Runtime overhead and problems caused by hardware

Branch instruction occur about every 3-5 instructions

CFl instructions/operations around every one of them

Memory access for CFl metadata is slow

CFl metadata could be corrupted if considered data (StackDefiler)

O 0O 0O 0O O

CFl metadata could be a bottleneck if placed in code



The Multiple Callers Problem




System Challenges

Sharing CFI subsystem resources

Separation of process states

Handling CFl Module Exceptions

Handling of legacy code




The Scheduling Issue
Process2

LSSP

1618

Label State

Label State Stack Register

This is running

Label State Stack

LSSP

5772

Label State
Register

This is being scheduled




The Scheduling Issue
Processi

LSSP &
\\’
Label State ‘ Label State
Label State Stack Register Label State Stack Register
A ) A )

This is running This is being scheduled



The Stack Issue

We ran out of stack
space! What do we do?

LSSP

Label State Stack




The Process Control Block

» Representation of a process to the kernel

* In Linux, look for task structin
include/li1nux/sched.h

e Information contains:
e Execution state (runnable, suspended, zombie...)
e Virtual memory allocations
* Process owner
* Process group
e Process id
|/O status information
CPU context state



Kernel Scheduler Additions

read current CFl awareness
if CFl is enabled

backup CFl state for current
read neXxt CFl awareness
if CFl is enabled

restore CFl state for next
else

disable CFl subsystem



The Scheduling Issue Resolved

5772

Label State
Register

Label State Stack

TASK_RUNNING

CFl Context
CFI_ON

TASK_RUNNING
CFl Context

CFl_ON




The Scheduling Issue Resolved

Label State Stack

Label State
Register

TASK_RUNNING

CFl Context

CFl_ON

TASK_RUNNING
CFl Context




Your stack still overflows
or underflows for that matter

 We use the PCB already, add things there

on overflow:
copy bottom half of current’s LSS to PCB
move top half of LSS to bottom
set LSSP to new location

on underflow:
get bottom half of current’s LSS from PCB
set LSSP to new location



The Stack Issue Resolved

LSSP

1618

Label State
Label State Stack Register

TASK_RUNNING

CFl Context

CFl_ON

p-
<




CFl Faults

* The CFl subsystem detected a CFl violation
* Add kernel log entry with CFI fault information
 Send SIGKILL to offending process

e This kills the process with no chance of a signal handler
running



Related Works

* HCFI:
* New instructions to track control flow
* Combines and relocates instructions into pipeline bubble slots
+ Single threaded, embedded applications only
* Intel CET:
+ Shadow stack for return addresses
* New register ssp for the shadow stack
+ Conventional move instructions cannot be used in shadow stack
* New instructions to operate on shadow stack
* New instruction for indirect call/jump targets: branchend
* Any indirect call/jump can target any valid indirect branch target



Control-flow Enforcement Technology

[Intel 2016]

J -
a
S

- A

I Cy
Q ‘

Vs



Control-flow Enforcement Technology
[Intel 2016]

e Backward edge:

e Shadow stack detects return-address manipulation
e Shadow stack protected, cannot be accessed by attacker
 New register SSp for the shadow stack

e Conventional move instructions cannot be used in shadow stack
 New instructions to operate on shadow stack

 Forward edge:

e New instruction for indirect call/jump targets: branchend

e Any indirect call/jlump can target any valid indirect branch target

e Could be combined with fine-grained compiler-based CFl (LLVM
CFl)



Comparison with HAFIX++




	Slide Number 1
	Slide Number 2
	Three Decades of Runtime Attacks
	Recent Attacks
	Relevance and Impact
	Slide Number 6
	Slide Number 7
	Runtime Attacks
	Slide Number 9
	ROP: Basic Ideas/Steps
	Threat Model: Code-reuse Attacks
	Main Defenses against Code Reuse��1. Code Randomization��2. Control-Flow Integrity (CFI)�
	Randomization vs. CFI
	EPISODE I �Code Randomization�Make gadgets locations unpredictable
	Fine-Grained ASLR
	Randomization: Memory Leakage Problem 
	Slide Number 17
	Just-In-Time ROP: �Direct Memory Disclosure 
	Readactor: Towards Resilience to Memory Disclosure
	Slide Number 20
	Slide Number 21
	�EPISODE II�Control-Flow Integrity (CFI)�Restricting indirect targets �to a pre-defined control-flow graph
	Original CFI Label Checking� [Abadi et al., CCS 2005 & TISSEC 2009]
	CFI: CFG Analysis and Coverage Problem 
	Which Instructions to Protect?
	Label Granularity: Trade-Offs (1/2)
	Label Granularity: Trade-Offs (2/2)
	Label Problem for Returns
	Forward- vs. Backward-Edge
	Losing Control: �On the Effectiveness of Control-Flow Integrity under Stack Attacks�ACM CCS 2015�Christopher Liebchen, Marco Negro, Per Larsen, Lucas Davi, Ahmad-Reza Sadeghi, Stephen Crane, Mohaned Qunaibit, Michael Franz, Mauro Conti�
	StackDefiler
	�Bypassing (Coarse-grained) CFI�
	Coarse-grained CFI: Lessons Learned
	Hardware CFI�
	Why Leveraging Hardware for CFI ? 
	Why CFI Processor Support? 
	HAFIX++
	Objectives
	Slide Number 40
	HAFIX++ ISA Extensions
	Indirect Call Policy
	Function Return Policy
	HAFIX++ Pipeline
	Slide Number 45
	Challenges …
	Architectural Issues
	The Multiple Callers Problem
	System Challenges
	The Scheduling Issue
	The Scheduling Issue
	The Stack Issue
	The Process Control Block
	Kernel Scheduler Additions
	The Scheduling Issue Resolved
	The Scheduling Issue Resolved
	Your stack still overflows�or underflows for that matter
	The Stack Issue Resolved
	CFI Faults
	Related Works
	Control-flow Enforcement Technology �[Intel 2016]
	Control-flow Enforcement Technology �[Intel 2016]
	Comparison with HAFIX++

