
How Secure is Split Manufacturing in Preventing
Hardware Trojan?

Zhang Chen, Pingqiang Zhou
School of Information Science and Technology

ShanghaiTech University
Shanghai, P. R. China

{chenzhang, zhoupq}@shanghaitech.edu.cn

Tsung-Yi Ho
Department of Computer Science

National Tsing Hua University
Hsinchu, Taiwan 30013

tyho@cs.nthu.edu.tw

Yier Jin
Department of Electrical &

Computer Engineering
University of Central Florida

Orlando, Florida 32816
yier.jin@eecs.ucf.edu

Abstract—With the trend of outsourcing fabrication, split
manufacturing is regarded as a promising way to both provide
the high-end nodes in untrusted external foundries and protect
the design from potential attackers. However, in this work,
we show that split manufacturing is not inherently secure. A
hardware trojan attacker can still discover necessary information
with a simulated annealing based attack approach at the place-
ment level. We further propose a defense approach by moving
the insecure gates away from their easily-attacked candidate
locations. Experimental results on benchmark circuits show the
effectiveness of our proposed methods.

I. INTRODUCTION

Due to the high cost of owning a state-of-the-art man-
ufacturing foundry and the complexity of integrated-circuit
(IC) design, globalized IC production flow has become the
mainstream. Although the separation of design and fabrication
brings economic benefits to design companies, it also incurs
significant concern on the security of fabricated circuits since
potential threats come from all stages of the supply chain in
the form of hardware attacks. To counter these attacks, all
stages of the design and fabrication flow need to take security
into account [1].

Hardware trojan (HT) [2], one of the most common attacks
on ICs, may not only cause huge economic losses but also
bring tremendous harm to the military, governmental, and
public safety [3]. As HT can be implanted across the whole
supply chain from functional design to fabrication [4], its de-
fense comprises of both pre-silicon prevention and post-silicon
detection/diagnosis methods. Split manufacturing [5]–[9], as
a pre-silicon prevention method, is currently one of the main
defense techniques. In split manufacturing, the whole design is
split into two parts, the Front End of Line (FEOL) transistors
and lower metal layers and Back End of Line (BEOL) top
metal layers. Only FEOL layers need to be fabricated in high-
end foundries while BEOL layers can be fabricated in a trusted
low-end foundry. In other words, due to split manufacturing,
only the transistors and the limited number of connections
in lower metal layers are exposed to potential threats, while
the connections in top metal layers are hidden from attackers.
Therefore, there is a tradeoff between security level and cost
– lower splitting layer means less information exposed to
attackers, but higher cost for manufacturing more lower metal
layers in trusted foundries.

Recent research works [5]–[7], [9] show that, even with part
of information hidden by split manufacturing, attackers can
still successfully attack a split fabricated design by exploiting
the heuristics used in physical design. To make split fabricated
design more secure, additional efforts need to be made in EDA
tools during physical design process. In this work, we come

up with two metrics to quantitatively measure the security
of a circuit under HT attack, where the attacker can implant
HT at multiple spots to guarantee success. To illustrate the
vulnerabilities of split fabricated circuits to targeted HT attack,
we first assume the most secure scenario of split manufacturing
in our work – the splitting layer is the M1 metal layer where
the attacker can only see a sea-of-gates with no inter-gate
connections. Then we propose an effective simulated annealing
(SA) based attack approach that incorporates global informa-
tion such as logic connection, total wirelength and leverages
the common knowledge that minimizing total wirelength is
a fundamental objective during placement. Furthermore, to
counter our proposed attack, we provide a defense method that
moves gates out of their easily-attacked candidate locations.

The contributions of this work are as follows:
• We propose two metrics to evaluate the security level of

a circuit under HT attacks.
• We present a SA-based attack method that integrates

global information with global heuristics. Our results
show that the proposed attack method is effective even
when a circuit is split after the M1 metal layer.

• We also propose a corresponding gate-swapping-based
defense approach. Experimental results show that it can
significantly improve the security of a circuit.

II. RELATED WORK

To carry out a targeted HT attack, one needs both the
complete gate-level netlist and the mapping of the gates in
netlist to their physical locations in the layout [7]. An example
for such attack is proposed in [10], where the state of hardware
registers is modified to maliciously raise privilege level. To
achieve successful attack, the gate and wire that corresponds
to the privilege bit needs to be determined.

To hide the connections in layout from attackers, [7] propos-
es to enhance security by lowering the splitting layer to be after
M1 so that the attacker can only see a sea-of-gates with no
inter-cell connections. However, the cost of BEOL foundries
will largely increase in this case. For general split manufac-
turing with several lower metal layers included in FEOL, the
attacker can reconstruct all the connections in the design by
greedily connecting nearby pins to each other, where the prox-
imity heuristic [5] exploits the fact that connected pins should
be placed close to each other. [9] further improves proximity
attack by incorporating several other heuristics such as load
capacitance constraint, timing constraint. As for defense, pin
swapping techniques [5] are adopted to reduce the correctness
of the reconstructed connections, while [9] further minimizes
the wirelength overhead arisen in security improvement. The

978-1-5090-5701-6/16/$31.00 c©2016 IEEE

problem with proximity attacks is that they do not take global
information such as total wirelength into account. Besides,
there is no guarantee that the reconstructed connection graph
from the layout is isomorphic to the connection graph of the
original netlist, so it cannot be directly used in HT attacks.

In [6], a graph isomorphism method is proposed to obtain
the netlist-layout mapping. Two connection graphs are respec-
tively constructed – one for the netlist and the other for the
physical layout of FEOL layers. Then the mapping is obtained
by graph isomorphism between the two connection graphs.
To evaluate the effectiveness of the attack, k-security metric
is proposed: If a gate in the logical netlist can be mapped
to k candidate locations in the layout, then this gate is k-
secure, meaning that it cannot be distinguished from the other
k − 1 gates. A wire lifting technique is then demonstrated to
uplift the security of the circuit. However, the security analysis
involved in k-security assumes that the attacker only exploits
logical connection information. But in practice, the attacker
can also exploit proximity information from physical layout.

III. PROBLEM FORMULATION

In this section, we first discuss our threat model, then
present our problem formulation on HT attack.

A. Threat Model
As discussed in Section II, the attacker wants to carry out a

targeted HT attack, which requires to get the mapping between
the gates in netlist and their locations in layout. While the
attacker can implant HT at all possible locations, such strategy
increases the workload of the attacker as well as the risk of
implanted HT being detected. Therefore, the attacker should
reduce the number of implantations as much as possible.

In our threat model, the attacker can get help from two
roles in two stages: A rogue element in the untrusted foundry
who can modify the FEOL layout during fabrication and
a malicious observer in the design stage who cannot do
malicious changes on the design, but has access to the precise
gate-level netlist of the entire circuit. Our threat model aligns
with the one used in [6].

The reason that the attacker is assumed to be able to obtain
gate-level netlist is that unlike software attackers, organization-
s that intend for hardware attack are resourceful and are willing
to pay for the related cost because successfully implanted HT
is capable of executing valuable attacks [11].

Moreover, to show the vulnerabilities of split-fabricated
circuits to HT attacks, we assume that the circuit is split after
M1, which gives least information to the attacker. We also
assume that primary inputs and outputs in the layout can be
uniquely identified based on the specification of the design
and can be correctly mapped to their counterparts in netlist
without further efforts.

Finally, if chips of a design are fabricated in batches, then
the attacker can buy an instance from the market and reverse
engineer the wire connections in BEOL, nullifying the effort
of split manufacturing on hiding connections [6]. Thus, we
assume that designers are aware of this and have all FEOL
parts fabricated before releasing their products to the market.

B. Problem Formulation
With the physical layout of the FEOL layers and the gate-

level netlist of the entire circuit, the goal of the attacker is to
map the gates in netlist to their physical locations in layout

so as to implant HT. We use Fig. 1 to illustrate our problem
definition. Fig. 1(a) is the graph corresponding to the gate-level
netlist of a circuit. Fig. 1(b) is the complete physical layout
of this circuit, which shows the correct mapping between
the gates in netlist (as shown in Fig. 1(a)) and the physical
gates in layout. Fig. 1(c) is the layout that the attacker sees,
with no inter-cell connections and all physical gates labelled
differently.

(a)

(b) (c)

Fig. 1. (a) Logical connection corresponding to the gate-level netlist. (b) The
complete physical layout with all gates correctly mapped to their counterparts
in netlist. (c) The physical layout that the attacker sees.

Let Vn = {1, 2, 3, 4} be the set of the gates in the netlist
and Vl = {a, b, c, d} be the set of the gates in the layout
that the attacker sees, then the mapping problem is to find a
mapping φ : Vn → Vl that is close to the correct mapping
φc : Vn → Vl. From Fig. 1(b)(c), the correct mappings are all
bijective: φc(1) = a, φc(2) = c, φc(3) = b, φc(4) = d.

For the attacker, since he can get information from the
untrusted foundry, he can reverse engineer all the components
in FEOL [9], after which he knows the gate type of all the
physical gates in layout. Consequently, the initial mapping for
the attacker is φ(x) = {a, b, c} for x = 1, 2, 3 and φ(4) = d.
Based on the initial mapping, if his target is gate 3, then he
has to implement HT at all three AND gates. Note that φ is
not restricted to be bijective. The reason for this is obvious:
the main goal of the attacker is to successfully implant HT,
so if the location for the target cannot be uniquely identified,
multiple implantations are acceptable. We call φ(Vn(i)) the
mapped set of the i-th gate in netlist, which contains all
the possible physical gates for Vn(i) to map to. Obviously,
|φ(Vn(i))| may not always be 1, but the attacker can try to
prune φ(Vn(i)) so as to reduce the cost and risk of the attack.

Generally, let m be the number of gate types in a cir-
cuit, the mapping problem becomes finding m mappings
φ1, φ2, φ3, ..., φm such that φj : V jn → V jl is the mapping
between the gates of type j in netlist and the physical gates
of the same type in layout. For any gate V jn (i) of type j,
its initial mapped set is the set of all the physical gates of
type j. The problem is then to prune the initial mapped sets
in an appropriate way. We will present our solutions to the

mapping and pruning problems in Section IV. After that, we
will present our defense method in Section V.

IV. ATTACK APPROACH

We propose a simulated annealing (SA) based attack ap-
proach that takes advantage of the global wirelength informa-
tion and also explores multiple mapping solutions. The attack
comprises of two steps:
• First, we use the SA engine that minimizes total wire-

length to get multiple netlist-layout mapping solutions.
• Second, we integrate all the mapping solutions. By ex-

tracting the most possible locations for each gate, we
further prune the mapped set of each gate to obtain the
final mapping solution.

The aim of this attack is to prune the mapped set of each
gate as much as possible so that the cost for implanting
HT is reduced, with the constraint that most mapped sets
should contain the real locations for corresponding gates. If it
were not the case, the attack may not take effect as expected
because the correct locations are not implanted with HT.
To quantitatively measure the effectiveness of the attack, we
propose two metrics:

1) Effective Mapped Set Ratio (EMSR). The mapped set of
a gate is effective only when it contains the real location
of this gate. If a mapped set does not contain the real
location, it misleads the attacker to miss the targeted
spot and harms the effectiveness of the attack. EMSR
is defined as the percentage of effective mapped sets
among all mapped sets. Formally,

EMSR =

∑|Vn|
i=1 |φ(Vn(i)) ∩ φc(Vn(i))|

|Vn|
(1)

where φ(Vn(i)) is the mapped set of gate Vn(i) and
φc(Vn(i)) is the real physical gate for Vn(i). |Vn| is the
total number of gates in the circuit.

2) Average Mapped Set Pruning Ratio (AMSPR). AMSPR
is the pruning ratio of mapped sets, calculated as the
average ratio between the reduced sizes of the sets after
attack and the sizes of the initial sets. Formally,
AMSPR =

1

|Vn|
·
|Vn|∑
i=1

(
1− |φ(Vn(i))|
|φini(Vn(i))|

)
· |φ(Vn(i)) ∩ φc(Vn(i))|

(2)
where φini(Vn(i)) is the initial mapped set for Vn(i) that
contains all the physical gates with the same gate type
as Vn(i). Note that if a mapped set φ(Vn(i)) becomes
ineffective during pruning, i.e., φ(Vn(i)) ∩ φc(Vn(i)) is
empty, this mapped set would only mislead the attacker
no matter how much it is pruned. Thus, if a mapped
set becomes ineffective, we set the pruning ratio of this
mapped set to be 0, meaning that the pruning is fruitless.

To achieve high AMSPR while not harming EMSR, instead
of looking for local heuristics that may work in fewer scenar-
ios, we propose an attack based on the global heuristic that
placement generally minimizes the total wirelength of a circuit.
Further, due to the suboptimality and diversity of placement
solutions, obtaining an accurate mapping based on a single
mapping solution is hard, so our work captures the diversity
of placement solutions by solving the mapping problem for a
number of times, after which all solutions are merged to form
a better solution.

A. Mapping by Simulated Annealing (SA)
Since the primary objective of placement tools is to min-

imize the total wirelength, we use SA method to obtain
netlist-layout mappings under the objective of total wirelength
minimization:
• First, a random bijective mapping is generated, with each

gate in netlist mapped to a random physical gate of
the same type. Note that if a gate type has only one
instance in the circuit, it is inherently correctly mapped.
Due to the property of bijective mapping, each gate
in layout is also uniquely mapped to a gate in netlist.
Consequently, the connections in the physical design can
be fully reconstructed by following the connections in
netlist. For the calculation of total wirelength, we use half
perimeter wirelength (HPWL) as the estimated wirelength
for each net.

• Second, to drive the mapping towards smaller total wire-
length, a SA framework is adopted to iteratively improve
wirelength by randomly swapping the mappings of two
gates. For example, if Vn(i) and Vn(j) previously map
to Vl(p) and Vl(q) correspondingly, then after swapping,
they map to Vl(q) and Vl(p) correspondingly. It is worth
mentioning that swapping can only happen between two
gates of the same type.

• In a mapping solution after SA process, if gate Vn(i) in
netlist is mapped to gate Vl(j) in layout, then we add
Vl(j) to φ(Vn(i)) if φ(Vn(i)) does not contain it.

• We run the above SA process for a number of times,
aiming to eliminate the improbable locations for each gate
in netlist. To avoid eliminating the real location of each
gate, we should run the SA process for enough times to
allow the correct mapping of each gate to emerge. All
the solutions, with each representing a possible place-
ment that minimizes wirelength, show the most possible
locations of a gate in netlist. If a gate in netlist is
never mapped to some physical gates in these wirelength-
optimized solutions, then it is unlikely for the gate to
map to these physical gates in the correct mapping. In
this way, φ(Vn(i)) for each gate is effectively pruned
to only include the possible locations in terms of global
wirelength minimization.

B. Mapped Set Pruning
To further reduce the number of possible locations of each

gate, a statistical method is applied. We illustrate this method
using the following example. Assume a gate Vn(i) in netlist
is mapped to the physical gate Vl(j) in M of the total N
SA solutions. Let φ(Vn(i)) be the mapped set for Vn(i) after
all SA process and S(Vn(i)) be the set of the physical gates
with the same gate type as Vn(i). Without any heuristic-
based inference, the probability of each gate Vl(j) in S(Vn(i))
being mapped to Vn(i) will be Pi(Vl(j)) = 1

|S(Vn(i))| . With
heuristics considered, the distribution of the probabilities is
biased towards the more possible choices. We use M

N to decide
whether to prune Vl(j) from φ(Vn(i)): If M

N is smaller than
1

|S(Vn(i))| , then the likelihood of Vl(j) being mapped to Vn(i)
is even smaller than randomly choosing a gate in S(Vn(i))
and mapping it to Vn(i). This reflects that a placement that
optimizes wirelength may not put Vn(i) at the location of Vl(j)
and the existence of Vl(j) in φ(Vn(i)) is largely due to the
vast exploration of solution space in SA process. So we prune
Vl(j) from φ(Vn(i)).

Formally, for any Vl(j) in φ(Vn(i)), we calculate Pi(Vl(j))
as nij

N , where nij is the number of the mapping solutions that
map Vn(i) to Vl(j). To give more flexibility to this method, we
use α

|S(Vn(i))| rather than 1
|S(Vn(i))| for comparison, where α ∈

[0, 2] is the parameter that controls the pruning power: Higher
value prunes more from φ(Vn(i)) and lower value prunes less.
The appropriate value for α is determined in experiment.

The difference between pruning process and the previous
mapping process discussed in Section IV-A lies in their
different goals: the mapping process aims to find all possible
locations for a gate in wirelength-opmitized placement so that
the attacker will not miss the real location; the pruning process
aims to further prune the possible locations in order to reduce
the cost and risk of attacks. We refer to the possible locations
after pruning as the candidate locations for a gate. The attacker
may implant HT either at all or stochastically at any subset of
these locations, based on his attacking capability.

V. DEFENSE

To fulfill the security provided by split manufacturing,
physical design techniques need to be deployed in placement
stage to reduce the information revealed by design heuristics.
Local movement of gates [9] is usually applied to disrupt the
proximity of connected gates. While it performs well against
greedy proximity attack, its performances are not naturally
generalized to global information based attack. To see this,
we use the example circuit in Fig. 2. There are one NOR2,

(a) (b)

(c) (d)

Fig. 2. Example circuit for defense: (a) original circuit, (b) FEOL for split
after M1, (c) circuit with v3, v4 swapped, and (d) circuit with v2, v3 swapped.

one INV and three NAND2 gates in this circuit. Fig. 2(a) is
the original layout. We assume that the fabrication is split after
M1 layer, so the attacker cannot see any inter-cell connections
just as in Fig. 2(b). Despite the absence of connections, the
attacker still can correctly reconstruct most connections even
without gate-level netlist because the circuit is well organized
in terms of pin positions. Now, if we only consider disrupting
pin proximity and swap v3 with v4 as in Fig. 2(c), the attack
effectiveness is mitigated. But for a HT attacker who has
netlist, he can get around the intentionally misleading pin
positions by using the global wirelength as the heuristic: When
swapping v3 with v4, the global wirelength of the circuit is
only affected smally, so the attacker will treat v3 and v4
as mutually interchangeable gates and implant HT at both
locations. Although the cost of the attack increases, the effort

in defense is much more nullified. On the other hand, if
the defender swaps v2 with v3 as shown in Fig. 2(d), the
global wirelength is significantly changed and the attacker will
not regard this placement as a possible one, which prevents
v3 from being correctly attacked. Therefore, although it is
undesirable to have increased wirelength, for the sake of
security in critical chips, there is a tradeoff for us to explore
sometimes.

To counter the threat from a more powerful HT attacker, we
propose a defense method that incorporates global wirelength
information. The goal of this defense is to hide gates from their
candidate locations, which means to decrease EMSR. As the
defender is required to know the candidate locations obtained
by the attack, he first needs to go through the entire attack
process to collect candidate locations for each gate. Then a
greedy gate-swapping-based defense algorithm is used, which
is shown in Algorithm 1. The goal is to swap the locations of
gates so that they are not in one of their candidate locations
obtained by the attack.

Algorithm 1 Greedy Gate-Swapping-Based Defense
Input:

The candidate locations for each gate φ, the original
placement

Output:
The placement with improved security

1: G← Vn
2: Ascendingly sort all the gates in G based on the number

of their candidate locations
3: while G 6= ∅ do
4: ToSwap ← ∅
5: Pop the first gate Vn(f) from G and add it to ToSwap
6: Find all the gates in G whose number of candidate

locations equals |φ(Vn(f))|, pop them from G and add
into ToSwap

7: while ToSwap 6= ∅ do
8: for each gate g in ToSwap do
9: if g /∈ φ(g) or |φ(g)| = S(g) then

10: Pop g from ToSwap
11: else
12: for each gate go such that go ∈ S(g) and go /∈

φ(g) do
13: Get the security elevation and wirelength in-

crease if g swaps its location with go
14: end for
15: end if
16: end for
17: Get the pair of g and corresponding go that gives

highest nonzero security elevation. If multiple pairs
have the same security elevation, get the one with
least wirelength increase

18: Swap the locations of g and go
19: Pop g from ToSwap
20: end while
21: end while
22: return The placement with improved security;

We start from the gates with fewest possible candidates
because they are most insecure [6]. For each gate g, we
find its out-of-candidate gates, which is defined as the union
set of each gate go that is with the same gate type as g
but not in the candidate locations of g. Then the security

elevation for the location swapping between g and any go is
measured using Algorithm 2. The reason we only consider
swappings between same-type gates is that in this case, no
matter how swappings are made, the candidate locations for
each gate remain unchanged. So if a gate is swapped to
an out-of-candidate location, its security elevation will not
be nullified by swappings of other gates. The calculation of
security elevation is based on the goal that we want to move
as many gates to their out-of-candidate locations as possible.
For a gate g, if it is not in an out-of-candidate location, then
its probability of being correctly mapped by random guessing
is 1

φ(g) . After being swapped to an out-of-candidate location,
its probability of being correctly mapped becomes 0. So its
security elevation is computed as 1

φ(g) . However, we want to
enforce more gates to out-of-candidate locations, so we add
security elevation by 1 if a gate is moved from an in-candidate
location to an out-of-candidate location.

Algorithm 2 Security Elevation Calculation
Input:

Two gates, g and go
Output:

The amount of security elevation if the locations for g and
go are swapped

1: if g /∈ φ(go) and go /∈ φ(g) then
2: SecurityElevation= 2 + 1

|φ(g)| +
1

|φ(go)|
3: else if go /∈ φ(go) and g ∈ φ(go) then
4: SecurityElevation= 1

|φ(g)| −
1

|φ(go)|
5: else
6: SecurityElevation= 1 + 1

|φ(g)|
7: end if
8: return SecurityElevation;

VI. EXPERIMENTAL RESULTS

A. Experimental Setup
The proposed techniques are evaluated on 8 circuits from

ISCAS-85 benchmarks [12]. OSU technology library [13] is
used and placement is performed by FastPlace3 [14].

B. Number of Simulated Annealing Process
In the first phase of attack, we run the SA process for

a number of times to eliminate improbable locations while
letting the correct locations to be included in mapped sets. If
the number of run times is too small, correct locations are
likely to be excluded from mapped sets. On the other hand, if
the number of run times is too large, then it would be a waste
of time after correct locations are already included.

TABLE I
CORRELATION BETWEEN MAXIMUM NUMBER OF SAME-TYPE INSTANCES

AND THE REQUIRED NUMBER OF SA RUNS TO REACH > 95% EMSR

Circuit c432 c499 c1908 c2670 c3540 c5315 c6288 c7552
#max 38 190 208 459 547 1016 623 1172same-type

#SA runs 54 196 455 673 944 1357 881 2398

In our experiments, we found that the proper number
for run times is related to the maximum number of same-
type instances in the circuit because they have most possible
locations to choose from. Table I shows the maximum number

of same-type instances and the required number of SA runs
to reach > 95% EMSR for benchmarks. A suitable choice for
#SA runs is two times of #max same-type.

C. Effectiveness of Attack
To save computation time, each SA process is run with a

fast mode without exhaustively searching the solution space.
For mapped set pruning, we tries out different value of α for
each benchmark. Fig. 3 shows the EMSR and AMSPR of each

Fig. 3. Effective Mapped Set Ratio (EMSR) & Average Mapped Set Pruning
Ratio (AMSPR) w.r.t. the pruning parameter α.

benchmark, from which we can see that α = 0.9 gives a good
tradeoff between EMSR and AMSPR. If α increases more,
then EMSR will suffer from quick reduction while AMSPR
grows slowly. This is because many correct locations are not
often included in a mapping solution. If we prune the mapped
sets too much, then large amount of correct locations will be
pruned out. The average EMSR at α = 0.9 is 85% while
the average EMSR at α = 0 is 95%, which means only 10%
mapped sets become ineffective during pruning. On the other
hand, the average AMSPR of all benchmarks rises to nearly
50%, which means half of the initial possible locations can be
pruned out, halving the cost and risk of the attacker.

Note that the effectiveness of the attack is not influenced
much by circuit scale. For example, c6288 has more than 5
times the number of gates than c1908 but the attack is more
effective on c6288 in terms of both metrics. The underlying
impact on the effectiveness of the attack comes from the
diversity of a circuit. c1908 has only 8 gate types including
primary input/output and almost half of the gates belong to a
same gate type. In comparison, c6288 has 15 gate types with
the maximum number of same-type instances being only 1

5 of
the total number of instances.

Our attack approach not only performs well on global
metrics such as EMSR and AMSPR, but also prunes many
mapped sets to a small size without turning the mapped sets
into ineffective. Fig. 4 shows the changes in the distribution of
the sizes of mapped sets of c432. Fig. 4(a) is the distribution
before attack while Fig. 4(b) is the distribution after attack.
For ineffective mapped sets, their set sizes are restored to
their initial sizes, i.e., the numbers of gates with corresponding
types. In Fig. 4(b), most mapped sets reside in the region
of size < 10, which largely reduce the cost and risk of
the attacker. For each benchmark circuit, Table II shows the
number of mapped sets of different sizes before and after
attack, where many mapped sets have their sizes reduced to
be under 30 after attack.

(a) (b)

Fig. 4. Distribution of the sizes of mapped sets of c432: (a) before attack,
(b) after attack.

TABLE II
THE NUMBER OF MAPPED SETS OF DIFFERENT SIZES: B MEANS BEFORE

ATTACK, A MEANS AFTER ATTACK

Circuit
Size of mapped set

[0, 10) [10, 30) [30, 100) [100, 200) [200,+∞)
B A B A B A B A B A

c432 17 105 70 40 72 14 0 0 0 0
c499 0 80 116 272 256 179 190 31 0 0
c1908 1 6 0 100 162 270 150 40 208 105
c2670 0 14 0 106 126 392 271 493 779 171
c3540 0 0 0 28 169 256 112 931 1365 431
c5315 0 3 0 11 0 343 168 723 2676 1764
c6288 0 27 47 149 204 452 294 1270 2411 1058
c7552 0 2 0 15 0 268 0 653 3733 2795

D. Effectiveness of Defense

The effectiveness of defense is directly measured by EMSR
since the goal of the defender is to hide gates away from their
mapped sets. Figure 5 shows the reduction of EMSR after
using the proposed defense method. We can see that the EMSR
of all benchmarks goes below 30%, with an average reduction
of 63.4%. With only a small number of effective mapped sets
left, the defense method moves most gates to locations that
are immune to the global wirelength based attack. Besides,
since we assign higher priority to more insecure gates, i.e., the
gates with smaller mapped sets, the number of small effective
mapped sets will decrease, significantly elevating the cost and
risk of the attacker.

Fig. 5. Effectiveness of our defense approach.

E. Security–Wirelength Overhead Tradeoff

Since our defense method can move gates to places that
wirelength-driven placement does not choose, the security
against attacks that utilize global wirelength heuristic is guar-
anteed. Also, the gates in out-of-candidate locations are secure
in a solid way, which means the best chance for the attacker

is to randomly guess their locations. Yet, extensively applying
this method to all gates is expensive.

Fig. 6. Security vs. Wirelength Overhead.

Fig. 6 shows the tradeoff between EMSR and wirelength
overhead for all benchmarks. As EMSR decreases during gate
swapping, the wirelength overhead increases approximately
linearly with EMSR. Thus, it is more cost-effective to use this
defense on the most insecure gates because the wirelength
overhead is not related to the security of the gates to be
swapped. The defender can also set a wirelength overhead
budget and only allow defense within this budget.

VII. CONCLUSION

In this work, we have shown that split manufacturing is not
secure and the attacker can get necessary information through
simulated annealing based attack approach at the placement
level. We further proposed an effective defense approach to
protect the gates away from the attack.

REFERENCES

[1] Y. Jin, “Introduction to hardware security,” Electronics, vol. 4, pp. 763–
784, October 2015.

[2] M. Rostami, F. Koushanfar, J. Rajendran, and R. Karri, “Hardware
security: Threat models and metrics,” in ICCAD, 2013, pp. 819–823.

[3] H. Li, Q. Liu, and J. Zhang, “A survey of hardware trojan threat and
defense,” Integration, the VLSI Journal, 2016.

[4] N. Jacob, D. Merli, J. Heyszl, and G. Sigl, “Hardware trojans: current
challenges and approaches,” IET Computers & Digital Techniques,
vol. 8, no. 6, pp. 264–273, 2014.

[5] J. Rajendran, O. Sinanoglu, and R. Karri, “Is split manufacturing
secure?” in DATE, 2013, pp. 1259–1264.

[6] F. Imeson, A. Emtenan, S. Garg, and M. V. Tripunitara, “Securing
computer hardware using 3D integrated circuit (IC) technology and split
manufacturing for obfuscation,” in USENIX, 2013, pp. 495–510.

[7] K. Vaidyanathan, B. P. Das, E. Sumbul, R. Liu, and L. Pileggi, “Building
trusted ICs using split fabrication,” in HOST, 2014, pp. 1–6.

[8] M. Jagasivamani, P. Gadfort, M. Sika, M. Bajura, and M. Fritze, “Split-
fabrication obfuscation: Metrics and techniques,” in HOST, 2014, pp.
7–12.

[9] Y. Wang, P. Chen, J. Hu, and J. J. Rajendran, “The cat and mouse in
split manufacturing,” in DAC, 2016, pp. 165:1–165:6.

[10] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou,
“Designing and implementing malicious hardware,” in USENIX, 2008,
pp. 5:1–5:8.

[11] J. Francq and F. Frick, “Introduction to hardware trojan detection
methods,” in DATE, 2015, pp. 770–775.

[12] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85
benchmarks: a case study in reverse engineering,” IEEE Design & Test,
vol. 16, no. 3, pp. 72–80, 1999.

[13] “System on Chip (SoC) Design Flows,” available at http://vlsiarch.ecen.
okstate.edu/flow/.

[14] N. Viswanathan, M. Pan, and C. Chu, “Fastplace 3.0: a fast multilevel
quadratic placement algorithm with placement congestion control,” in
ASP-DAC, 2007, pp. 135–140.

