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ABSTRACT
Mostmodern electronic systems are hosted by printed circuit boards
(PCBs), making them a ubiquitous system component that can take
many different shapes and forms. In order to achieve a high level
of economy of scale, the global supply chain of electronic systems
has evolved into disparate segments for the design, fabrication,
assembly, and testing of PCB boards and their various associated
components. As a consequence, the modern PCB supply chain
exposes many vulnerabilities along its different stages, allowing
adversaries to introduce malicious alterations to facilitate board-
level attacks.

As an emerging hardware threat, the attack and defense tech-
niques at the board level have not yet been systemically explored
and thus require a thorough and comprehensive investigation. In
the absence of standard board-level attack benchmark, current re-
search on perspective countermeasures is likely to be evaluated
on proprietary variants of ad-hoc attacks, preventing credible and
verifiable comparison among different techniques. Upon this re-
quest, in this paper, we will systematically define and categorize
a broad range of board-level attacks. For the first time, the attack
vectors and construction rules for board-level attacks are developed.
A practical and reliable board-level attack benchmark generation
scheme is also developed, which can be used to produce references
for evaluating countermeasures. Finally, based on the proposed ap-
proach, we have created a comprehensive set of board-level attack
benchmarks for open-source release.

1 INTRODUCTION
Nowadays, the printed circuit boards (PCBs) are ubiquitous in al-
most all kinds of electronic systems. The PCBs take in a variety of
representations with different sizes, form factors, materials, number
of stack layers, and fabrications parameters. Usually the design of
a PCB involves hundreds of elements, including both integrated
components such as microprocessor chips, field programmable gate
arrays (FPGAs), and application-specific integrated circuit (ASICs),
and discrete components such as resistors, capacitors, inductors,
diodes, transistors. There can also be thousands of signal traces
and power rails to enable board-level high-performance commu-
nications and power delivery. To address the design complexity,
PCB designers need to take various constraints into considerations
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during the PCB design process. For example, complex hierarchical
power delivery system (PDS) is a necessity to fulfill the various
power supply requirements of different components. Other con-
straints such as signal integrity and assemblability should also be
carefully considered.

However, among all design constraints, security is often omit-
ted in board-level designs, despite that numerous vulnerabilities
are already exploited due to the segmented board-level supply
chain [1, 14, 19, 28]. Following the global PCB supply chain, the
design, fabrication, test, and the selling of different electronic com-
ponents are performed by different, often untrusted parties. While
researchers start to look into the problem recently and try to de-
velop countermeasures, they meet a main obstacle that targeted
security evaluation benchmarks for PCBs are lacking. It is urgently
needed to develop benchmarks representing all different types of
board-level threats so that different detection techniques can be
verified and compared.

In the area of security benchmarking, past research has inten-
sively studied attacks and Trojans at the chip level. In [24] the au-
thors propose standard benchmarks at different levels (RTL, netlist,
and layout) to evaluate chip-level hardware Trojans and their de-
tection techniques by leveraging a vulnerability analysis flow. Eval-
uation metrics of the benchmarks is also introduced such as Trojan
detectability. Despite the massive work in developing chip-level
Trojan benchmarks [24, 29], those methods, designs, and evaluation
results cannot be directly applied to the board level. In the case
of inserting chip-level Trojans, the usual assumptions are: both
the power supply voltage and the specifications of I/O of on-chip
blocks are unified, and malicious circuits can be implemented at any
location occupied by filler cells or capacitor cells without routing
limitations. However, these assumptions do not hold in benchmark-
ing board-level attacks. For a PCB design, there can be various
supply voltage domains and the specifications of the I/O of chips’
can be different. Besides, the placing and routing of a malicious
circuit are limited by the board spare area and density of the traces.

In this paper, we propose a systematic definition and a compre-
hensive taxonomy of board-level attacks based on the thorough
analysis of existing and emerging board-level threats. Potential
attack mechanisms and attack vectors are examined and evaluated.
Further, a set of constraints for successfully implementing board-
level attacks into the target designs are specified. Based on those
constraints, a novel rule-based benchmark generation mechanism
is developed to create reliable and practical board-level security
benchmarks. The main contributions of this paper are as follows.

• We define and categorize the board-level attacks and Trojans
based on the target component and attacking mechanism.

• A practical and reliable board-level hardware attacks and
Trojans benchmark generation scheme is proposed. This
method can guide researchers in developing and evaluating
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countermeasures to emerging board-level vulnerabilities and
threats to system security.

• Sample attacks on selected PCB designs are created following
the proposed method to validate the proposed benchmarking
method.

2 BACKGROUND
2.1 PCB Design Process
Figure 1 (right) illustrates a flight controller board that represents a
typical PCB design commonly found in today’s electronic systems.
In general, the PCB design process is composed of following steps:
top-level design, schematic capture, PCB layout, PCB fabrication,
and electrical components assembly. During the top-level design,
system architecture and block diagram are defined according to
the functional requirements and physical constraints of the system.
The detailed specifications of the PCB (e.g., physical dimensions,
power routing strategy, cost budget, etc.) are thus determined in this
process. Based on the block diagram, the schematic of the PCB is
captured. In modern designs, designers will first select the chips that
can fulfill the planned functions of each block. Peripheral circuits
are then designed around each chip, which are used to supporting
the functionality of these chips. At the end of the schematic step, the
schematic file (i.e., netlist) and the bill of materials (BOM) file can
be generated. The former contains the information of the electrical
net connections and the latter defines the exact model including
value, vendor, package, etc. of all components in this design.

The PCB layout is similar to the Place&Route (P&R) process of
the digital IC design and is designed after the schematic capture step.
Different from chip-level P&R process which is often performed
automatically relying on design automation tools, the PCB layout is
often performed manually due to the sophisticated considerations
of power integrity, signal integrity, interference, and assemblability.
The layout file (i.e., Gerber file) is prepared in this step. The file
contains all components and the routing graphical information
and can be used for PCB fabrication. After the PCBs are fabricated,
the components are assembled and soldered either manually or
automatically guided by the BOM file. Tests and validations can be
performed between each step of the process.

2.2 Board-level Attacks
Based on the PCB design process described above, we define board-
level attacks as intentional malicious modifications of a PCB during
any stages of design, fabrication, assembly, and in-field usage of
the PCB. In this definition, we assume any attack that targets the
board and its associated component as the victim could constitute a
board-level attack. As illustrated in Figure 1, the board-level attacks
include the malicious modifications applied to processing units (mi-
crocontroller, FPGA, etc.), components (passive components and
ASICs), trace/via, fabrication parameters, as well as the deliberate
violations of normal usage constraints set by the designers or dis-
tributors, i.e. malicious probing and accessing. The modifications
can be injected at any phase of the entire procedure of the PCB,
including PCB design, fabrication, assembly, and in-field usage.

According to the scope specified in our definition, board-level
Trojan is a major subset of board-level attacks. A board-level Trojan
generally contains two parts: the trigger and the payload [24]. The
trigger monitors variations of the signals or a series of events on

Figure 1: The category of board-level attacks and a flight controller
board design with example malicious modifications inserted.
the board. Once the preset conditions of the trigger are satisfied,
the payload will be activated and perform malicious behaviors [29].
Note that the adversaries do not necessarily introduce modifica-
tions to the original circuits and may perform the attacks without
using any trigger. For board-level attacks, we assume that attackers
will not maliciously modify the internal structures of the integrated
circuits, i.e. chip-level hardware Trojans. We believe that any mod-
ifications inside ICs are part of the chip-level hardware security,
rather than board-level hardware security.
2.3 Existing Board-Level Attacks Benchmark
Compared to the abundant literature on chip-level attacks [9, 29],
security research on board-level threats is rather sparse. In [17] au-
thors develop a benchmarking solution to facilitate an unbiased and
comparable evaluation of countermeasures applicable to PCB trust
assurance. However, only KiCAD .NET format netlists are provided
by the benchmark to generate the layout of PCBs with and without
Trojans. This abstraction level limits the usage of the benchmark
and prevents users from evaluating schematic capture and circuit
simulation using the same design. Further, Trojans introduced in
these benchmarks comprise mainly of discrete components, i.e.
BJTs, resistors, and capacitors, to mimic the behaviors of the logic
gate. Such simplified strategy does not consider the fact that at-
tackers can take full advantage of off-the-shelf small package chips,
e.g. 74-series circuits, to implement more advanced attacks. In this
paper, we develop several rules constraining the generation of func-
tional and sneaky attacks. Following these rules, we curate a set of
state-of-the-art PCB reference designs projects and generate the
benchmark at different abstraction levels based on the rules.
3 BENCHMARKING METHODOLOGY
3.1 Board-Level Attack Vectors
In this section, we summarize and classify the known board-level
attacks vectors according to the life cycle of PCB design, the in-field
use and the types of modifications. This comprehensive classifi-
cation also allows us to identify new attack vectors that has not
been exploited in the past. The possible attack vectors are listed in
Table 1, where board-level attacks can be injected at any phase of
the PCB design and fabrication by adversaries, as well as during
the in-field usage by users. We divide the entire procedure of the
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Table 1: Summary of Example Board-Level Attack Vectors

S1: Circuit Design S2: Fabrication/Assembly S3: In Field

M1: `C/`P/FPGA
Insert an extra chip that can be used as hardware
backdoor; Replace the model of the chip to the
one with lower specifications.

Insert maliciously programmed chips[22]; Use
unqualified chips [13, 26]; Use counterfeit chips.

Insert extra malicious chips [16, 18, 25]; Replace
chips to the ones with malicious firmware [1]
or maliciously programmed [11, 15]; Replace the
System-in-Package (SIP) to the one with mali-
cious circuit inserted.

M2: Component

Change models or modify values of components
to enable malfunction under special operating
conditions [19]; Insert transistor as the backdoor
to interrupt boot; Trojans based on logic gates
[17]; Use unqualified components; Remove ESD
protection diodes; Insert sampling resistor to en-
able power side-channel analysis.

Remove capacitors to degrade PDS and make
it vulnerable to power viruses; Use counterfeit
components; Alter specifications of capacitors
to make them ineffective under specific condi-
tion [19]; Modify configuration resistor of power
management IC to disable under- or over-voltage
protection [19].

Implement handmade antenna to enable remote
side-channel information leakage; Insert power
rail sampling resistor to enable power side-
channel analysis; Implement transistors to power
rail and enable fault injection attacks.

M3: Trace/Via

Expose sensitive inner-layer signal; Maliciously
access enable/shut-down pin of the chip; Bypass
the protection chips; Insert backdoor by connect-
ing unused pins to sensitive signal.

Remove fault flag wires; Expose traces with sen-
sitive signals; Increase wire coupling effects to
leak information [14]; Alter the width, thickness,
and space of traces to cause parametric failures
in the field or to induce early failure [19].

Add shorting wires to Flash to interrupt boot
and gain privilege [1]; Create the backdoor by
connecting sensitive signal with fly-air wire.

M4: Fabrication
Parameters N/A

Change the thickness of stack layers to cause
communication failure at specific frequency [14];
Use unqualified solder material to create prema-
ture failure triggered by specific thermal profiles
[19]; Changing the characteristics of the dielec-
tric to cause early failure [19].

N/A

M5: Probing/Ac-
cessing N/A N/A

Glitch supply voltage for DoS [21]; Glitch supply
voltage for fault injection [23]; Maliciously access
debug ports/buses [1, 8, 10, 20, 27, 28]; Power
side-channel analysis [12].

PCB life into three phases: circuit design, fabrication and assembly,
and in-field operation, which leads to an extension of attack models
compared to ones of chip-level Trojans [29]. For S1: Circuit Design
phase, we assume the design house is untrusted and the attackers
can directly introduce modifications to the schematic. For S2: Fab-
rication/Assembly, we assume the foundry of PCB fabrication, the
entity for PCB assembly, or the vendors of electrical components
are untrusted. At S3: In-Field stage, we assume that some adver-
saries can assume the role of normal users to gain access to the
product and perform attacks or apply malicious changes.

In terms of modifications, compared to the chip-level threats,
board-level threats have broader representations of attacks.We cate-
gorize board-level malicious modifications into five types according
to the main source of the malicious function. The M1: `C/`P/FPGA
is referring to the threats caused by adding, altering, removing,
or using counterfeit microcontrollers, microprocessors, or FPGAs.
The M2: Component refers to adding, altering, or removing the
passive components or the chips. If the attackers only apply mali-
cious modifications to the signal wire or PCB traces/vias, it will be
categorized as M3: Trace/Via. For example, the foundry may inten-
tionally expose the signal lines containing sensitive information
by adding vias, where the lines originally are hidden between PCB
stack layers by the designer. The M4: Fabrication Parameters refers
to the malicious alterations to the fabrication process, such as the
stack layer thickness, the material of the board or solder, etc. And
the M5: Probing/Accessing is the type of attack that the adversaries
maliciously access the board port or probe the board-level signal.
Examples of such attacks are using a modchip on Xbox to avoid
game authority check [28] or power side-channel analysis on en-
cryption chips. Both M4 and M5 can only be implemented at S2
and S3 stage respectively. Also note that some board-level attacks
overlaps with chip-level attacks (e.g., side-channel analysis) at M5.

3.2 Rules for Board-Level Benchmarking
Due to the different properties exhibited at the board- and chip-
level circuits, the methodology of building a board-level attack
benchmark is distinct from building chip-level Trojan benchmark.
To facilitate the development of board-level benchmarking, various
design rules are created.
Rule 1: The power supply requirements of inserted malicious circuits,
unless self-powered, should be compatible with at least one of the
voltage domains on the PCB.
At board-level, different chips/components have different power
supply requirements such as supply voltage level, maximum current,
supply noise tolerance, etc. Thus the PCB developers need to design
a hierarchical PDS creating multiple voltage domains to fulfill the
requirements of board-level circuits. Similarly, the attackers need to
make sure these requirements of the board-level malicious circuit,
unless it is self-powered, are compatible with at least one of the
voltage domains provided by the board PDS. Even if the malicious
circuit is self-powered, the reference voltages, i.e. the zero potential,
between the malicious circuit and the victim board need be aligned.
Rule 2: The specifications, e.g. signal type, voltage level, frequency,
etc., of the malicious circuits’ I/Os should match the ones of the victim
PCB circuit’s I/Os.
At board level, different signals can have different I/O specifications
in a PCB design. For instance, the full-speed USB2.0 protocol defines
that the signals are differential-ended running at 12𝑀𝑏𝑝𝑠 and the
voltage level of the signal line is in 0 ∼ 3.3𝑉 . While for full-speed
I2C protocol, the signals are single-ended running at 400𝐾𝑏𝑝𝑠 and
the voltage level can be 1.8𝑉 , 3.3𝑉 , or 5𝑉 . Therefore, when inserting
a board-level malicious circuit, the attackers need to make sure the
I/O specifications match the requirements of the victim circuit.
Rule 3: The wire line accessibility and signal integrity of the victim
circuit should not be violated when inserting malicious circuits, except
that the violation itself is the mechanism of the attack.
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Figure 2: Benchmark Generation Workflow for Board-Level Attacks (P1 - P4 are the steps of the workflow).

For PCBs with high density or with few stack layers, the routing
resources are highly limited and one signal cannot be accessed
from every part of the board. Some signals can also be hidden by
inner-layer traces and buried vias. Although one signal is accessible,
the adversaries need to take care of the signal integrity. At high
frequencies the wire lines are regarded as transmission lines and
the impedance match needs to be satisfied. Modifications to the
signal line may directly disable all the communications on this
wire. Therefore, when benchmarking board-level attacks, wire line
accessibility and signal integritymust be checked to ensure practical
malicious circuits.
Rule 4: The design of the malicious circuits, including the selection
of the model, package of the corresponding chips/components, should
blend in with the design style of the victim PCB circuits.
A board-level malicious circuit can be built by various types of chip-
s/components and accomplished by various methods. For example,
there are multiple ways to perform a 4-input XOR logic operation:
1) build the digital circuit using discrete BJTs or MOSFETs; 2) utilize
the 74 series logic ICs which contain XOR gates; 3) use a software
program in a microcontroller, e.g. ATtiny5. For each method, there
are many options for the models and the packages, which forms
a large design space. However, to keep the malicious circuits rea-
sonably sneaky, the design should be similar to the victim circuit
from the perspective of chip/component types, packages, etc. For
instance, if the PCB design is composed of microcontroller chips
and passive components in surface mount packages (SMD), it is
not reasonable to have the malicious circuit built by BJTs in the
TO-92 package with three mounting holes, as the latter would be
too conspicuous for detection. It should be noted that this rule does
not apply to in-field attacks.

3.3 Workflow of Benchmark Generation
Based on these rules, we develop a methodology for generating
benchmarks of board-level attacks and aworkflow using themethod
(see Figure 2). The first step is to collect the signals with rare activi-
ties for trigger selection. The candidate trigger wires come from two
parts: I/Os with rare activities and unconnected pins of the chips.

Since the I/O activities of the chips are highly related to the pro-
grams of the chips, we perform code analysis based on the code and
the architecture of the chips. Wires are further selected as candidate
trigger wires (note that the number of trigger wires are decided by
attackers). Then the specifications of the wires are looked up from
the reference design. Meanwhile, the payload can be specified by
attackers or picked from the victim pool, which is built based on the
attack vectors mentioned in Section 3.1. In this step, both the tradi-
tional digital Trojans and the attacks based on analog properties
are considered for the payload. Once the candidate payload wires
are selected, corresponding specifications are also looked up from
design files and datasheets. The malicious circuit is designed based
on the information of trigger/payload wires specifications, available
PDS voltage domains, types of other chips/components, and the
available chips/components. Rule 1, 2, and 4 are incorporated in
this step. If there exists a malicious circuit design that meets all
these rules, an infected schematic can be generated.

For layout level benchmark, packages of the malicious circuit
are selected according to the packages of other chips (PCB spare
area is a constraint here). Rule 4 is considered in this step. Then
based on Rule 3, the placing and routing feasibility are checked,
following the signal integrity check. The signal integrity check is
not necessary for the board with low speed. Therefore we set up a
threshold to determine whether to perform the check, as:

𝑘
𝐿𝑏

6 𝑖𝑛𝑐ℎ/𝑛𝑠 <
1
𝑓𝑐

(1)

where 𝑓𝑐 is the clock frequency of the signal, 𝐿𝑏 is the board cir-
cumstance, and 𝑘 is the safety factor. In this case we set 𝑘 = 3. The
constant 6 is the propagation speed of the signal at board-level
𝑣𝑝 = 𝑐0/

√
𝜖𝑟 = 6 𝑖𝑛𝑐ℎ/𝑛𝑠 , where 𝑐0 = 3 × 108 𝑚/𝑠 is the speed

of light, and 𝜖𝑟 = 4 is the relative dielectric constant for the FR4
material that widely used in PCBs. If the infected layout passes the
checks, the benchmark can then be generated. Otherwise, we will
return to previous steps (marked as P1, P2, P3, and P4) and re-design
the malicious circuit.

It should be noted that this process is finished manually for
two reasons: The peripheral circuits of the chips consist of mostly
analog-style circuits. Besides, at the board level, the parasitic effects
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Figure 3: The PCB layout of (a) original reference design and (b)
malicious design of Arduino Due; (c) A malicious MOSFET is con-
nected to the UART transmitter to leak information through LED;
(d) The maliciously programmed ATtiny microcontroller monitors
the UART and generates Flash erase signal when triggered; (e) Two
XOR logic chips output a signal to reset the board once triggered.

of the components and routing are much more obvious. Therefore,
the automatic board-level schematic generation is not yet broadly
adopted in practice. Secondly, as mentioned in Section 2.1, almost all
PCB layouts are generated manually due to massive considerations.
But the development of a tool to facilitate auto-generation will be
the future work to help automate this workflow.

4 BOARD-LEVEL ATTACK BENCHMARKS
4.1 Reference Designs
To facilitate the development of board-level attack benchmarks, rep-
resentative circuit boards are chosen as the victim designs. Open-
source hardware projects are mainly selected due to their modern
design styles, the availability of PCB designs as well as detailed
documents, firmware, and/or application software. As a result, re-
searchers can easily reconstruct the board-level security evaluation
benchmarks. The complexity of the reference designs ranges from
2-layer boards with about 20 components to 12-layer boards with
several hundred components, representing small to large electronic
systems. The type of reference designs also covers a broad range
of application space, including the digital wallet for bitcoin [7],
microcontroller/FGPA development boards [2, 4], controllers for
unmanned aerial vehicles [5], single-board computer [6], embedded
AI development board [3], etc. Based on the workflow, we can gen-
erate a variety of different board-level attacks to compile a full set
of benchmark suite. Due to the page limit, in the following sections,
we only present two sample benchmarks. More benchmarks can be
found at https://github.com/xz-group/PCBench.

4.2 Benchmark based on Arduino Due
Figure 3(a) shows the original PCB layout of the Arduino Due
board [2]. It is a microcontroller development board based on the
ATsam3x8e microcontroller. Arduino Due board is a 2-layer design
with 141 components while its clock frequency is 84𝑀𝐻𝑧. The
dimension of the board is 102 𝑚𝑚 × 53 𝑚𝑚. In this benchmark,
we insert three malicious circuits to perform information leakage,
memory corruption, and deny-of-service (DoS) attacks, respectively.
Each malicious circuit is designed by running through the workflow
proposed in Section 3.3 for several iterations. All three malicious
circuits can be inserted in S1 and S2 stages.

Figure 3(c) illustrates the schematic of the M2 type attack where
the information is leaked through the LED by inserting an extra
MOSFET. The LED is used for indicating the output pulse-width
modulation (PWM) signal of the microcontroller. The information
from micro-controller passing through the UART0 port is leaked
to the LED. Its clock frequency is 3.68𝑀𝐻𝑧 and the voltage level
is 0 ∼ 3.3𝑉 . We select the P-channel MOSFET PMV48XP as the
malicious circuit. It has 1𝑉 threshold and turn-on/off delay no more
than 70𝑛𝑠 , fitting the specifications of the victim. When the UART0
TX is in idle mode, the voltage is 3.3𝑉 and the P-channel MOSFET
is turned off so that the original function of the LED indicator
circuit will not be affected. In addition, during the P2 and P3 steps
(see Figure 2), we ensure the model and package of the MOSFET
are the same as the ones used in the original design to keep the
malicious function less suspicious. In schematic generation, the
gate of the MOSFET is connected to the TX pin of the UART0 port.
The source of the MOSFET is connected to the input of the LED
driving amplifier. Attackers can thus monitor the flashing LED to
snoopy the transmitted information.

Figure 3(d) shows the malicious modification of an M1 type at-
tack. A maliciously programmed microcontroller ATtiny102F is
inserted into the design. This microcontroller supports UART com-
munication with no peripheral circuits. We select the UART1 port
as the trigger and the ERASE pin of the ATsam3x8e as the payload.
ATtiny102F can operate under 3.3𝑉 supply voltage which is the
supply voltage of the Arduino Due board. This also ensures the
specifications of ATiny102F’s I/Os are consistent with the victim’s.
Attacker can send a specific message through UART1 port to Ar-
duino Due and trigger ATtiny102F. Upon receiving the triggering
signal, a pulse longer than 200𝑚𝑠 is generated to ERASE pin, forcing
the ATsam3x8e to erase the embedded Flash memory, causing data
integrity violation. The trigger message can be complex enough to
avoid unintentionally triggering.

Figure 3(e) shows another M2 type attack, which is similar to
a chip-level Trojan. Through code analysis (see Figure 2), we find
that three GPIOs are not used in the program. These GPIOs are
then used as triggers with the payload the RESET pin of ATsam3x8e.
Two 74AHC1G86 XOR logic chips with small packages are inserted
to the design in the P2 and P3 steps of the workflow. By running the
program that triggers the assigned GPIOs, the malicious circuit can
enable RESET to induce hardware reset and crash the system. For
all three malicious circuits, the layouts are generated after the P&R
feasibility and the integrity check (determined by Equation 1). The
malicious circuit included PCB layout is illustrated in Figure 3(b).

4.3 Benchmark based on A13-OLinuXino
As shown in Figure 4(a), the Olimex A13-OLinuXino [6] is a single-
board Linux computer, which contains an Allwinner A13 Cortex-A8
processor. The board has 4 layers and includes 370 components.
The dimension of the board is 12𝑐𝑚× 12𝑐𝑚 and the clock frequency
of the processor is 1𝐺𝐻𝑧. We apply three malicious modifications
to the design, covering M1, M2, and M3 types, respectively. All of
these malicious modifications are inserted in S1 and S2 stages. The
modified PCB layout is illustrated in Figure 4(b).

Figure 4(c) shows the schematic of the M2 type attack violating
the availability of the system. The payload is the N_OE and APS
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Figure 4: The PCB layout of (a) original reference design and (b) ma-
licious design of Olimex A13-OLinuXino; (c) The malicious circuit
receives the interrupt signal from a real-time clock chip and reset
system; (d) The maliciously programmed ATtiny microcontroller
snoops the microphone and leak information through UART; (e) A
malicious trace is inserted to bypass power rail isolation.

pins of power management IC AXP209. Once the two pins are con-
nected, the system is forced to perform a hardware reset. The INT
pin of the on-board real-time clock (RTC) chip PCF8563 is selected
as the trigger since this pin is rarely used. The malicious circuit
is composed of an inverter logic chip 74LVC1G06, an N-channel
MOSFET BSS138, and the pull-up resistor. During the P2 step (see
Figure 2), we ensure the I/O specifications of the malicious circuit
are compatible with the victim’s. For the P3 step, The model and
the package of the MOSFET is also the same as the ones used in
the origin design. Attackers can take advantage of the alarm func-
tion of PCF8563 to enable a time-controlled attack. Once triggered,
PCF8563 outputs a low pulse at the INT pin. The MOSFET will then
be turned on, connecting N_OE and APS pins to reset the system.
Signal integrity is validated in the generated PCB layout.

Figure 4(d) demonstrates theM1 type attack based onmaliciously
programmed ATtiny102F for snooping the microphone of the sys-
tem. ATtiny102F has embeddedADCswhich canmonitor the analog
signals of the microphone input and the information can be trans-
mitted through a board-level UART port. Similar to the previously
presented malicious circuit based on ATtiny102F, its power sup-
ply is available from the board-level PDS. The P&R feasibility are
validated while the signal integrity check is passed according to
Equation 1. Figure 4(e) represents an M3 type attack, which causes
a DoS attack. In the USB-hub block of A13-OLinuXino, a power
distribution switch chip SY6280 is used to electrically isolate the
core power supply and the power for USB in one direction. The
attackers can short the input and output of SY6280 through a short
PCB trace, which disables the protection for over-voltage attacks
through the USB port.

5 CONCLUSION
In this paper, we provide a systematic framework to classify and
identify possible board-level attacks and develop a practical and
comprehensive benchmarking method for such attacks. Practical

benchmarking rules are developed to ensure the success of imple-
menting attacks into the victim devices based on the detailed the
attack vectors we have summarized at the board level. Following
these rules, a workflow of generating board-level attack bench-
marks is developed. Two sample board-level security benchmark
are demonstrated with 6 types of attacks.
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