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Abstract—Previous methods of performing adversarial attacks against
speech recognition systems often treat this problem as a solely opti-
mization problem and require iterative updates to generate optimal
solutions. Although they can achieve high success rate, the process is
too computational heavy even with the help of GPU. In this paper,
we introduce a new type of real-time adversarial attack methodology,
which applies Recurrent Neural Networks (RNN) with a two-step training
process to generate adversarial examples targeting a Keyword Spotting
(KWS) system. We extend our attack to physical world by adding extra
constraints in order to eliminate the distortions in real world. In the
experiment, we launch a real-time adversarial attack on the KWS system
both in digital and physical world. The experimental results of digital
world show that the execution time of our attack is more than 400
times faster than the state-of-the-art attack (i.e., C&W attack) with
the comparable attack success rate. In physical world, after adding
extra constraints, the perturbation becomes more robust such that the
average attack success rate increases from 40.3% to 84.3%.

I. INTRODUCTION

Deep Neural Networks (DNNs) have achieved great advances in
some safety-critical scenarios, such as image classification, audio
recognition and natural language processing [1]–[7]. However,
studies have shown that these existing DNNs are vulnerable to
adversarial attacks. Specifically, an adversary can easily fool a
neural network to output incorrect results by adding the particular
perturbation to the original inputs. Most of existing works on
this topic mainly focus on the area of image recognition [8]–
[17]. For example, Carlini et al. [11] introduced a new type of
adversarial attack, so-called C&W attacks, against the deep neural
neural networks with high success rate. Their goals are to craft the
malicious images that can lead the target DNNs to misclassify their
inputs but keep imperceptible to human eyes as the perturbations
are tiny.
In the area of audio recognition, the goal of an adversary is

to add imperceptible noises to the audio so that these audio can
misclassify the automatic speech recognition (ASR) systems. Re-
cent research has demonstrated that the malicious audio samples
generated by the adversaries can also manipulate the transcription
results of the ASR systems like keyword spotting (KWS) systems.
Alzantot et al. [18] performed a black-box adversarial attack which
crafts the adversarial audio by adding small background noises
without having to know the detailed knowledge of the underlying
model. Taori et al. [19] proposed a new black-box attack method
to fool ASR systems with high success rate by combining the
approaches of both genetic algorithm and gradient estimation.
Zhang et al. [20] utilized the property of audio circuits to launch a
completely inaudible attack on several popular speech recognition
systems, like Siri, Google Now and Alexa. Since then, several
follow-up works have been proposed to improve the previous
adversarial attack methodologies [21]–[23]. Although the recent
adversarial attacks have made significant progresses, it is difficult
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for them to be practically launched in real-world systems due
to the following limitations: (1) The effectiveness of previous
adversarial attacks on the ASR systems falls dramatically when
facing complex physical world with environment-induced vari-
ables, such as background noises and reverberation. (2) Current
recording equipments like microphone are often utilized to receive
audio signal in real world and can automatically remove noise
from the received audio signal by cutting out all but the audible
frequency of sound. In this case, the audio perturbation generated
by previous attack methods is often viewed as random noise and
is easily diminished by such a recording equipment while its
frequency goes beyond the range of audio frequency. (3) Current
adversarial attacks on the ASR systems often take a large amount
of time to generate a satisfactory adversarial example, which
makes it difficult to be used in a real-time attack scenario. Many
of the previous methods required many iterations of calculation
and iterative update to transform an input into single adversarial
example, showing that there is no simple mapping between them.
Although they can achieve high success rate, the process is too
computation heavy even with the help of GPU.
In this work, we propose a novel adversarial attack method

against the popular ASR system (i.e., KWS) in both the digital
and physical world. We assume an adversary who targets the
KWS system has the full knowledge about the KWS system, such
as exact training data, architectures, parameters, etc. The main
contributions of this paper are summarized as follows:

• We introduce a new adversarial attack method that adopts the
Recurrent Neural Networks (RNNs) for generating adversarial
samples in real time. These generated samples can easily
mislead the KWS system to output the target labels even
under the over-the-air condition.

• We combine the RNNs pre-training and the RNNs fine-tuning
in a way that is efficient and effective for crafting more robust
audio adversarial examples. The proposed two-step training
process helps us to speed up the parameter optimization for
crafting the imperceptible perturbations that would be added
to an original audio.

• The experimental results demonstrate that our attack method
can achieve higher success rate and faster generation speed
of malicious audio in both digital world and physical world
when compared to previous schemes.

II. RELATED WORKS

A. Recurrent Neural Networks

RNNs are powerful models that have shown promising results
in many sequential data prediction tasks, like video key-frame
tagging and machine translation [24], [25]. Given a sequence
X = {x(t ), y (t )}t ∈ R(D,K )×T , where x ∈ RD , y ∈ RK and T is the
horizon of sequence X . RNNs can make the accurate predictions
at the current time point t by effectively combining the previous
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input data with the current data. Currently, there are many well-
known variations of RNNs, like vanilla RNNs, bidirectional RNNs,
recursive RNNs and long short-term memory (LSTM) [26], which
allow us to solve the problems of time sequence that traditional
deep neural networks have difficulties to deal with.
In this paper, we use LSTM as our RNN cell to generate the

adversarial audio examples for the target KWS systems. The LSTM,
which basically consists of input gate, output gate and forget gate,
is well-suited for the handling of data that involves with time or
order (such as audio or video).

B. Keyword Spotting System

In this paper, we choose the KWS system introduced in [27] as
our target model. The KWS system is often used to enable speech-
based user interactions on intelligent appliances. The predefined
keywords can be easily retrieved by this system from an audio
dataset with high accuracy. The advantage of the KWS system
is that a user can apply voice to operate the target device
with the KWS system. Specifically, If a user speaks particular
voice demands, the KWS system would receive these commands
and then switch the device from one mode to another mode.
Besides, unlike other speech recognition systems, the size of the
KWS system is generally small enough to be widely applied to
various embedded devices, such as mobile phones and vehicle-
mounted electronics. The KWS system recognizes users’ voice
commands by running different types of deep neural networks, for
example, the depthwise separable convolutional neural network
(DS-CNN). In this paper, our goal is to apply the RNN model to
generate the targeted audio adversarial examples which are usually
imperceptible to human listeners.

C. Audio Adversarial Attacks

Alzantot et al. [18] use the genetic algorithm to generate
adversarial examples for a KWS system. In order to launch the
adversarial attacks against a speech to text system in black-box
setting, Taori et al. [19] improve the attack algorithm in [18] by
adding momentum mutation and using gradient estimation to
speed up the process of convergence to final results. However,
they require extremely long run time and large perturbations to
craft adversarial examples, which makes it difficult to be used
in a real-time attack scenario. Yuan et al. [22] find the mapping
between hidden Markov model (HMM) state transition and the
probability density function of the acoustic model, and then use
a gradient-based approach to search for the minimum amount
of perturbations to the probability density function identifier
sequence of the original input such that it can be misclassified
by the speech to text system. Different from the aforementioned
methods, Zhang et al. [20] use a modulation technique to inte-
grate the commands into the original audio so that the crafted
audio examples can be effectively recognized by the ASR system.
However, the perturbation modulated on a high carrier frequency
can be easily filtered out by a low pass filter. Abdullah et al.
[28] utilize some psychoacoustics techniques like time domain
inversion and time scaling to make the audio dramatically change
in time domain but still remain the same frequency domain
feature, so only the model can correctly interpret messages, while
the adversarial example will sound totally different to the original
one, and hence will be easily noticed by human.
Besides, there are works that extend the digital world attack

to physical world. To make the perturbation more robust against
ASR systems in physical world, Zhang et al. [20] add random
noise to enhance the perturbation against background noise.

Yuan et al. [22] claim that the electronic noise from both the
speaker and receiver is a variable for physical world attack, and
it is quite different from case to case. Hence, they use random
noise to simulate the electronic noise, making the adversarial
example robust enough for different speakers and receivers. Yakura
et al. [23] extend [21] by introducing impulse responses to the
generation process of adversarial examples. They collect various
datasets of impulse responses, which can make the adversarial
example more robust to handle reverberations in complex physical
environments. However, all the methods mentioned above take
a long time to generate the adversarial examples by iteratively
optimizing the objective function, which means that the proposed
attack methods cannot be exploited in real-time applications.
Since the datasets used for the adversarial examples generation
cannot contain impulse responses of the physical environment,
the attack is often ineffective under specific physical environ-
ments. In order to solve this problem, we propose an attack
method based on the combination of some physical constraints
in the objective function, such that the generated adversarial
examples can be played over-the-air.

III. METHODOLOGY

A. Problem Formulation

Given an audio x, a target label t and the model of KWS system
with h classification results f :Rn → T , where n is the dimension
of x and T = {i |1 ≤ i ≤ h, i ∈ N }, our goal is to find a minimal
perturbation δ for x with f (x) �= t and make the RNN model
misclassify x +δ as label t :

mi ni mi ze ‖δ‖
s.t . f (x)= l ,

f (x +δ)= t ,

l �= t

(1)

B. Digital World Adversarial Attack

1) Feature extraction: We build our RNN model as the structure
in Fig. 1. The short-time Fourier transform (STFT) [29] is a popular
feature extraction technique for audio signal. It applies Fourier
transform to a sliding window as it moves over time and shows
the frequency and phase features inside the sliding window. In this
way, it not only performs feature extraction to the complicate data,
but also significantly reduces the input size of the RNN model.

2) RNN structure: After the STFT layer, we split the data into
real and imaginary part before feeding them into two separate
stacked RNNs.

3) RNN pre-training: To speed up the training process, we let
our RNN model mimic the perturbations generated by iterative
fast gradient sign method (iFGSM) [30]. We define our RNN model
as gθ , where θ denotes the parameters for the RNN model. Given
the training dataset X , for each input x ∈ X , with label l , we
generate an adversarial example xt

ad v with label t by iFGSM,
and then we subtract the original input x from the adversarial
example xt

ad v to get the perturbation generated by iFGSM, δ
x,t
ad v ,

which will be the pre-training label for our RNN model. Finally
we let the RNN model learn about how to generate the adversarial
perturbations by minimizing the following loss function:

mi ni mi ze
θ

∑

x∈X

∥∥∥gθ(x)−δ
x,t
ad v

∥∥∥ (2)

We try to find the best θ which can minimize the total difference
between the perturbations generated by our RNN model and
iFGSM for all training data.

489

7C-2



Figure 1: Procedure of perturbation generation with recurrent neural
networks.

4) RNN fine-tuning: We further improve our RNN model by
directly optimizing against the KWS network. In this step, we relax
the constraint in Eq. (1) and set our objective function as follows:

mi ni mi ze
θ

∑

x∈X
(
∥∥gθ(x)

∥∥+ c · loss(x′))

wher e x′ = x+gθ(x)
(3)

Here x denotes a training audio,
∥∥gθ(x)

∥∥ denotes the L2 distance
between the clean audio x and the perturbed audio x′, l oss(x′)
reflects how good the adversarial example x′ is, and c > 0 is a
regularization parameter which controls how important l oss(x′)
is. The l oss(x′) is defined below,

loss(x′)= (max
i �=t

(L(x′)i )−L(x′)t +R)+ (4)

where L(x′)i /L(x′)t denotes the logit score of label i/t when
inferring x′ on the KWS system. R is a non-negative constant
which controls the confidence score of the target label t . If we
increase R, our RNN model will tend to create the result with
higher confidence score.

C. Robust Physical World Perturbation

In this subsection, we describe how to add some constraints on
our objective function to make our adversarial example created by
our RNN model propagate through physical world conditions such
as background noise, reverberation, and recording equipment,
which are also mentioned in [23]. The pipeline of the proposed
audio adversarial attack method in physical world is shown in Fig.
2.
In recording equipment, the frequency response of a micro-

phone falls within the range between lowest and highest fre-
quencies. Generally, the frequency response of the microphone

is ranging from around 80 Hz to 15 kHz, which would be a good
choice for human voice since 20 Hz to 20 kHz is an audible range
for humans. In other words, if the frequency of perturbation is
outside the audible range, the perturbation will be filtered out. In
order to get rid of this scenario, we use a band-pass filter to limit
the frequency range of the perturbation.

In the physical environment which contains background
noise, we use Gaussian white noise [31] to simulate the back-
ground noise. The advantage of Gaussian white noise is that it can
mimic the circumstances of some random processes that appear
in nature. As a result, Gaussian white noise becomes widely used
in signal processing or audio engineering. The simulated audio
after undergoing band-pass filter and adding Gaussian white noise
is denoted below:

x′ = x +B and(gθ(x))+noi se (5)

where x denotes a training audio, gθ(x) denotes the pertur-
bation generated by the RNN model, B and(gθ(x)) denotes the
band-pass filter which cuts off the frequency of gθ(x) beyond
the audible range, and noi se denotes the Gaussian white noise
generated by Gaussian distribution N (μ, σ2). The amplitude of
the noise depends on the applied environment, and x′ denotes
an adversarial example.

When a sound is reflected by objects, the reverberation will
be created. It is also one of the factors that influence the result
of speech recognition. In order to reproduce the reverberation
of the sound, we add impulse responses to the training audio
to enhance the robustness. By convolving the audio with the
impulse response of the physical environment, we can easily
simulate the reverberation of the audio in the given physical
environment. However, it is hard to get a real impulse response
from the experimental room directly. Hence, we use a room
impulse response simulator to simulate the impulse response. We
first generate a 3D simulated room by configuring our real world
experimental room dimension, the sound absorption coefficient
of walls, and the maximum number of reflections. Secondly, we
decide the positions of the source speaker and target recorder and
then generate the room impulse response accordingly. At last, we
make convolution of these impulse responses and the training
audio.

Moreover, we want the adversarial example to be able to attack
through the entire room no matter the locations of a recorder
and speaker are. Thus, we divide the simulated room into various
grids, and place the speaker and recorder in different grids and
generate the impulse response independently. We reformulate the
physical world objective function based on Eq (3) as follows:

mi ni mi ze
θ

∑

x∈X

∑

i∈I
(
∥∥gθ(x)

∥∥+ loss(x′))

wher e x′ = T (x +B and(gθ(x)), i )+noi se

T (x, i )= x ∗ i

(6)

Here i denotes the simulated room impulse response, I denotes
the impulse response dataset which is generated by the room
impulse response simulator based on our testing environment,
and function T denotes the convolution operation. Since the com-
putation time by calculating the summation of all the convolutions
with impulse responses for single input x is too high, we only
convolve the input with one impulse response which is chosen
randomly from I for each training iteration.
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Figure 2: Overview of the proposed audio adversarial attack method in physical world. The generated adversarial examples need to be
propagated through the air before the inference stage of the KWS system.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

In the experiment, we train a depthwise separable convolutional
neural network (DS-CNN) in the KWS system with 94.6% recog-
nition rate as the target model [27]. We evaluate the experimental
results on Google common voice data set [32], containing ten
different basic commands. For each target t , we gather all other
nine classes of audio in [32] and use 85% of the audio for training
and 15% for testing. We train an RNN model targeting one of the
ten classes in [32] as the procedure described in Section III-B.
Similar to the previous attack method in [23], we also utilize the
signal-to-noise ratio (SNR) as one of the evaluation matrics. All
experiments are carried out on a server with an Intel i7-8086K
4GHz CPU with 16GB RAM and two NVIDIA GeForce RTX 2080Ti
GPUs.

B. Digital World

We set the hyper-parameters as follows: The frame length, frame
step and fast Fourier Transform size of STFT are 800, 200, 513,
respectively. We implement our work with Tensorflow, and train
our model using the Adam optimizer as the learning rate is
set to 0.001. The Adam optimizer realizes the benefits of both
Momentum and AdaGrad, achieving smoother update and faster
convergence compared to other stochastic optimization methods.
To get the most robustness out of our method, we need to

find the value of the parameter c in Eq (3) for the best trade-off
between attack success rate and average SNR in the loss function.
We test the models with c equal to 0.015, 0.01, 0.005 and 0.002. For
training our RNN models, we train them until the loss converges
in the pre-training step and then train up to 30 epochs in the fine-
tuning step. The empirical results in Fig. 3 show that the model
with c equal to 0.01 makes the best trade-off between SNR and
success rate. So we let the value of c equal to 0.01 for all the
experiments in digital world.

Table I: Results generated by two different models

label
LSTM Bidirectional

SR SNR time SR SNR time
down 0.96 25.06 0.097 0.96 20.908 0.124
go 0.95 24.74 0.096 0.93 23.266 0.123
left 0.96 23.385 0.096 0.93 23.69 0.124
no 0.95 21.021 0.096 0.92 21.97 0.124
off 0.95 24.521 0.096 0.95 20.842 0.123
on 0.95 23.669 0.096 0.92 21.97 0.124
right 0.96 28.003 0.096 0.95 22.898 0.124
stop 0.96 25.7 0.096 0.95 22.99 0.124
up 0.96 24.231 0.096 0.95 22.767 0.124
yes 0.95 24.548 0.095 0.96 22.17 0.124

average 0.955 24.488 0.096 0.94 22.347 0.124

(a) average SNR with different c

(b) success rate with different c

Figure 3: Illustration of the attack results with different values of c.

In Table I, we compare the performance of two different RNN
structures. The LSTM model contains 3 layers of LSTM cells
followed by a dense layer and the bidirectional model contains
2 layers of forward-pass LSTM cells, 2 layers of backward-pass
LSTM cells with a dense layer at the end. SR denotes the attack
success rate among the testing set, and time denotes the execution
time for the corresponding method to generate a single adversarial
example. The LSTM model outperforms the bidirectional model in
SNR, success rate and execution time. In view of this, we choose
the LSTM model to be our RNN structure for the rest of the
experiments.

We compare our attack method with FGSM [9] and C&W [11]
attacks on the same test dataset, and the results are shown in Table
II. For the FGSM attack, we generate the adversarial example by
calculating the partial derivative of the loss function with respect
to the input data. The amplitude of perturbations for all data
points is a hyper-parameter in FGSM attack, and hence to make a
fair comparison, we set it to 0.0001 such that the resulting average
SNR of FGSM attack is similar to ours. The FGSM attack only
achieves 11.3% success rate, showing that transforming an audio
to adversarial one is too complex to generate by calculating partial
derivative only once.

Next we compare our method with C&W attack. For C&W attack,
we perform 9 steps of binary search and run 800 learning epochs

491

7C-2



Table II: Comparison among three different attacks in digital world

label
Our method FGSM C&W

SR SNR time SR SNR time SR SNR time
down 0.960 25.06 0.097 0.090 25.750 0.015 0.979 23.712 44.971
go 0.950 24.74 0.096 0.125 26.743 0.011 0.963 27.508 43.664
left 0.960 23.385 0.096 0.105 25.444 0.011 0.968 24.942 43.706
no 0.950 21.021 0.096 0.084 26.673 0.015 0.973 25.093 44.659
off 0.950 24.521 0.096 0.069 27.357 0.015 0.979 26.065 43.634
on 0.950 23.669 0.096 0.129 26.637 0.015 0.962 26.935 43.647
right 0.960 28.003 0.096 0.185 27.393 0.015 0.976 29.249 43.727
stop 0.960 25.7 0.096 0.095 26.402 0.015 0.988 25.180 43.742
up 0.960 24.231 0.096 0.116 26.233 0.015 0.971 26.816 43.645
yes 0.950 24.548 0.095 0.131 27.079 0.015 0.979 27.703 43.710

average 0.955 24.488 0.096 0.113 26.571 0.014 0.974 26.320 43.910

(a) Waveform comparison for the clean audio
(blue), the reduced amplitude (red) and the
added amplitude (yellow)

(b) STFT features for clean example

(c) STFT features for adversarial example

Figure 4: Illustration of an attack results with average SNR equal to
24.5

using Adam optimizer with learning rate equal to 0.01. C&W attack
conducts many iterations of searching and optimizing to find
the optimal solution and optimal hyper-parameter. As a result,
the quality of C&W attack is slightly better than ours, but at
the cost of long processing time. Our attack can achieve 95.5%
success rate and 24.488 SNR on average and generate a single
adversarial example within a tenth of a second. Also we visualize
the waveform and the STFT features of our attack on an input in
Fig. 4.

Table III: Comparison between our attack method with and without
physical world constraints

label
with physical constraints without physical constraints

success rate success rate
0.5-meter 4-meter 0.5-meter 4-meter

down 0.752 0.645 0.333 0.134
go 0.753 0.673 0.404 0.116
left 0.880 0.836 0.513 0.322
no 0.866 0.660 0.388 0.333
off 0.883 0.866 0.415 0.106
on 0.840 0.700 0.582 0.178
right 0.892 0.867 0.483 0.387
stop 0.876 0.776 0.197 0.138
up 0.862 0.85 0.360 0.275
yes 0.823 0.786 0.360 0.133

average 0.843 0.766 0.403 0.212

C. Physical World

In the physical world scenario, we play and record the adver-
sarial examples with a speaker (DELL AX210) and a microphone
(Sony ECM-PCV80U). The place for the experiment is a meeting
room (7m*7m*3m) with concrete walls, and the background noise
is 32 dB. We randomly select 100 audio from the testing set for
each label. The c and number of epochs are set to 0.015 and
50, respectively. If the frequency range of the band-pass filter is
too small, the magnitude of perturbation will become too high.
In contrast, a large frequency range will make the perturbation
undermined with some microphones. As a result, we tried various
ranges of frequencies and found that 1k Hz to 8k Hz is better
because of less perturbation and higher robustness.
In order to simulate the impulse responses, we use [33] which

provides an intuitive python object-oriented interface to quickly
construct different simulation scenarios involving multiple sound
sources and microphones in 3D rooms. We divide the simulated
room into 9 grids, and place the speaker and recorder in different
grids. By fixing the speaker in one grid, the recorder can be placed
in one of the other 8 grids to produce 8 kinds of simulated
impulse responses. Then we acquire 72 kinds of simulated impulse
responses and add them to the training process. We set the
distance between the speaker and recorder to 0.5 and 4 meters,
respectively to test the robustness against different distances. The
experimental results of our attack are shown in Table III.
We can see that the average attack success rate without any

physical constraints is 40.3% in 0.5-meter and 21.2% in 4-meter
scenario. In contrast, after adding the physical constraints by using
the band-pass filter, white Guassian noise and simulated impulse
responses, the average attack success rate is increased to 84.3% in
0.5-meter scenario. The success rate of our method is 76.6% in 4-
meter scenario and drops only 7.7% when compared to 0.5-meter
scenario. These results suggest that the adversarial examples gen-
erated by our attack method can successfully propagate through
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the environment with background noise and reverberation. Be-
sides, the frequency of the perturbation falls into the audible range
which cannot be filtered out by the recording equipment. By using
an impulse room simulator, we can make our adversarial example
more robust against the physical environment. Furthermore, We
can save more cost and time because we do not need to record
the impulse response directly in the physical world.

V. DISCUSSION

We introduce a powerful audio adversarial attack that can easily
fool the KWS system to give targeted incorrect decisions in both
digital world and physical world, demonstrating that our attack
can be applied to evaluate the robustness of DNN based audio
classifiers. We perform a recurrent neural network as shown in
Fig. 1 for crafting malicious perturbations via combining short-
time Fourier transform (STFT) and LSTM cells that can produce
very similar, high confidence audio for all classes by integrating
RNN pre-training algorithm and RNN fine-tuning algorithm into
the training process. The results of the experiments demonstrate
that our audio adversarial attack on the KWS system requires less
computation time and achieves higher success rate compared to
previous schemes due to our novel design of network architecture
and feature extraction of the RNNs.
Our attack method still has some limitations. One major limi-

tation is that we launch the adversarial audio attack against the
target model in white-box setting, which means that an attacker
has full access to the target model, such as network structures,
parameters, training data, etc. In the future, we will mainly focus
on conducting a black-box adversarial audio attack methodology
in both digital world and physical world. Specifically, we plan
to design a new optimization algorithm for generating more
robust malicious audio, which can achieve higher success rate and
transferability at lower distortions when compared to the previous
works of adversarial attack. In the experiment, we also find that
a few crafted audio can be easily noticed by human listeners
due to the large perturbation added by an attacker, meaning the
designed objective function in Section III can be further improved
to generate more inconspicuous audio.

VI. CONCLUSION

In this paper, we propose using an RNNs model to generate
audio adversarial examples against the KWS system. In digital
world, the results of experiments show that our method can
generate adversarial examples within one second while achieving
high success rate and fair amount of perturbations. Besides, we
also extend our work to physical world. We successfully mis-
lead the KWS system to wrong keyword decisions in physical
world conditions and make the perturbation more robust against
different distances of the speaker and recorder in the physical
environment. Future research directions include enhancing the
transferability of malicious audio and designing effective defense
mechanisms against adversarial attacks.
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