
6C-1

PT-Spike: A Precise-Time-Dependent Single Spike 
Neuromorphic Architecture with Efficient Supervised Learning

Tao Liu*, Lei Jiangt, Yier Jint, Gang Quan* and Wujie Wen*
* Florida International University, tIndiana University, i University of Florida 

*{tliu023, gang.quan, wwen}@fiu.edu, fjiang60@iu.edu, fyier.jin@ece.ufl.edu

Abstract—One of the most exciting advancements in Artificial Intelli­
gence (AI) over the last decade is the wide adoption of Artificial Neural 
Networks (ANNs), such as Deep Neural Network (DNN) and Convolu­
tional Neural Network (CNN), in real world applications. However, the 
underlying massive amounts of computation and storage requirement 
greatly challenge their applicability in resource-limited platforms like 
drone, mobile phone and IoT devices etc. The third generation of neural 
network model-Spiking Neural Network (SNN), inspired by the working 
mechanism and efficiency of human brain, has emerged as a promising 
solution for achieving more impressive computing and power efficiency 
within light-weighted devices (e.g. single chip). However, the relevant 
research activities have been narrowly carried out on conventional rate- 
based spiking system designs for fulfilling the practical cognitive tasks, 
underestimating SNN’s energy efficiency, throughput and system flexibil­
ity. Although the time-based SNN can be more attractive conceptually, 
its potentials are not unleashed in realistic applications due to lack of 
efficient coding and practical learning schemes. In this work, a Precise- 
Pime-Dependent Single Spike Neuromorphic Architecture, namely “PT- 
Spike”, is developed to bridge this gap. Three constituent hardware- 
favorable techniques: precise single-spike temporal encoding, efficient 
supervised temporal learning and fast asymmetric decoding are proposed 
accordingly to boost the energy efficiency and data processing capability 
of the time-based SNN at a more compact neural network model size 
when executing real cognitive tasks. Simulation results show that “PT- 
Spike” demonstrates significant improvements in network size, processing 
efficiency and power consumption with marginal classification accuracy 
degradation, when compared with the rate-based SNN and ANN under 
the similar network configuration.

I. In t r o d u c t io n

Deep learning enabled neural network system, i.e. deep neural 
network (DNN) or convolutional neural network (CNN), has found 
broad applications in realistic cognitive tasks such as speech recogni­
tion, image processing, machine translation and object detection [1], 
[2], However, performing high-accurate testings for complex DNNs 
or CNNs requires massive amounts of computation and memory 
resources, leading to limited energy efficiency. For instance, the 
recognition implementation of CNN-AlextNet [3] involves not only 
huge volumes of parameters (61 million) generating intensive off-chip 
memory accesses but also a large number of computing-intensive high 
precision floating-point operations (1.5 billion) [4]. Such a weakness 
makes these solutions less attractive for many emerging applications 
of mobile autonomous systems like smart device, Intemet-of-Things 
(IoT), wearable device, robotics etc., where very tighten power 
budget, hardware resource and footprint are enforced [5], [6],

Different from the CNN and DNN designs, spiking-based neu­
romorphic computing, which is inspired from the biological spiking 
neural network (SNN), has featured as achieving tremendous comput­
ing efficiency at much lower power of small footprint platforms, e.g. 
the famous IBM TrueNorth chip that has total 1 million synapses 
and an operating power of ~70mW  [7], These low-power, light, 
and small single-chip solutions leverage the efficient event-driven 
concept to ease the computational load and enable possible cognitive 
applications in resource limited platforms, creating a very unique but 
promising branch of neuromorphic computing research [8], [9].

In spiking neuromorphic systems, the information is usually con­
veyed by the occurrence frequency of spikes (rate coding) or their 
firing time (time coding). Compared to the rate-based SNN, the
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more biological plausible time-based SNN may offer better energy 
efficiency and system throughput [10], since theoretically the infor­
mation can be flexibly embedded in the time (temporal) domain of 
short and sparse spikes instead of the spiking count represented by 
a group of dense spikes in rate coding, e.g. the spike occurrence 
frequency is proportional to the intensity of the input like each pixel 
density of the image [7], [11], As a result, the rate-based SNN is 
naturally more power-hungry than that of time-based SNN due to 
the increased number of spikes and relevant spike operations, such 
as synaptic weighting and Integrate-and-Fire (IFC) etc. Meanwhile, 
the processing efficiency of time-based SNN can be further enhanced 
by performing an early decision making based on the temporal 
information extracted from early fired spikes, while in rate coding, the 
classification cannot be initiated until the last moment, e.g. winner- 
takes-all rule by sorting the number of spikes fired during the entire 
period of decoding time for each output neuron [12].

However, the potentials of such an emerging architecture are signif­
icantly underestimated due to lack of efficient hardware-favorable so­
lutions for time-based information representation and complex spike­
timing-dependent (temporal) training of biological synapses towards 
practical cognitive applications [13], On one hand, translating the 
input stimulus (i.e. image pixels) to the delay of the spikes, namely 
time-based encoding, is non-trivial because the coding efficiency 
can be easily degraded by the biased spike delays distributed in 
the limited coding intervals. Also, the hardware realization of time 
coding is usually expensive, as the time-based spike kernel needs 
to be carefully designed to provide accurate time information (e.g. 
pre-synaptic/post-synaptic time [10]) for time-based training. On the 
other hand, realizing more biological plausible spikmg-time based 
training, i.e. unsupervised spiking-time-dependent plasticity (STDP), 
is very complex and costly due to the exponential time dependence 
of weight change and difficult convergence of learning [14], In real- 
world applications, training of the rate-based SNN can be usually per­
formed off-line by directly borrowing the standard back-propagation 
algorithm from artificial neural network (ANN) [11]. However, this 
time-independent learning mle does not fit the time-dependent SNN 
because of a fundamentally different learning mechanism.

In this work, we investigate the possibility of unleashing the 
potentials of time-based single-spike SNN architecture in realistic 
applications by orchestrating the efficient time-based coding/decoding 
and learning algorithm. A Precise-Time-Dependent Single Spike Neu­
romorphic Architecture, namely “PT-Spike”, is proposed to facilitate 
the cognitive tasks like the MNIST digit recognition. Our “PT- 
Spike” incorporates three integrated techniques: precise single-spike 
temporal encoding, efficient supervised temporal learning, and fast 
asymmetric decoding. Our major contributions are:

1) We develop a precise-temporal encoding approach to efficiently 
translate the information into the temporal domain of a single 
spike. The single spike solution dramatically reduces the en­
ergy, while offering efficient model size reduction;

2) We propose a supervised temporal learning algorithm to facil­
itate synaptic plasticity on this single-spike system. The pro­
posed algorithm significantly improves the learning capability 
and achieves comparable accuracy when compared to the ANN 
and rate-based SNN under the similar configuration;

3) We design a novel asymmetric decoding to relieve the unique
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Fig. 1: The Conceptual View of Rate-coding and Time-coding in SNNs.

and serious weight competition issue existing in this single­
spike system, and significantly improve the efficacy and effi­
ciency of synaptic weight updating.

II. B a c k g r o u n d s  a n d  M o t iv a t io n s

A. Neural Coding in SNNs

The neural coding in SNNs can be generally categorized as rate 
coding, time coding, rank coding and population coding etc. [15]. In 
particularly, the first two codings are the most attractive, since each 
piece of coded information is only associated with the spikes gener­
ated by a single input neuron, offering simplified encoding/decoding 
procedures and design complexity.

Fig. 1 demonstrates an example of conceptual comparison between 
rate coding and time coding in SNNs. T e and T , (R e and R )  
denote two types of input neurons: the time-coded (rate-coded) 
excitatory and inhibitory neurons, respectively. The excitatory neuron 
can exhibit an active response to the stimulus while the inhibitory 
neuron intends to keep silent. T i and T 2 (R i and R 2 ) denote two 
time-coded (rate-coded) output neurons for the classification. The 
rate-based SNN generates far more number of spikes than that of 
time-based SNN in both types of input neurons. After the input spikes 
are processed by the two different SNNs, a single spike firing at a 
specific time interval can perform an inference task in the output layer 
of the time-based SNN. However, a considerable number of spikes 
are needed for fulfilling a rate-based classification in the rate-based 
SNN, indicating a much higher power consumption. Moreover, the 
rate-based SNN may exhibit a slower processing speed than that of 
time-based SNN, since the output neuron of the former SNN needs 
to count the spiking numbers (i.e. through Integrate-and-Fire [16]) in 
the whole predefined time window, while that of the latter one may 
quickly suspend its computations once a spike is detected.

B. Limitation o f Existing Spiking Neuromorphic Computing Research

Neuromorphic Designs: Many studies have been conducted to 
facilitate the spiking based Neuromorphic Computing System (NCS) 
designs in real hardware implementations, including CMOS VLSI 
circuit [7], [17], [18], [19], reconfigurable FPGA [8], and emerging 
memristor crossbar [20], [11]. However, these works mainly focus 
on the rate- or time-based SNN model mapping and hardware 
implementations, rather than the SNN architecture optimization, i.e. 
coding, decoding and learning approaches etc.

Temporal Coding: The concept of temporal coding, which relies 
on the arrival time or delay of a spike train for information repre­
sentation, has been widely explored and proved in the development 
of time-based SNN [21], [22], These theoretical studies, however, 
mainly emphasize on the biological explanations of time-based SNN 
models based on simple cognitive benchmarks (i.e. two inputs XOR 
gate), which are far from the complicated real-world problems such as 
image recognition. Recently, Zhao et al. [23] proposed an encoding 
circuit to handle the temporal coding, however, this type of work 
still concentrates on component-level hardware implementations with 
simple case studies, and hence is lack of a holistic architecture-level 
solution set capable of handling realistic tasks. In [24], a complete 
time-based SNN design is proposed. However, their solution suffers 
from limited accuracy fundamentally constrained by existing coding 
and temporal learning rule, and is not optimized towards hardware- 
based neuromorphic system designs.

Temporal Learning: Since the popular learning approaches such 
as back-propagation [25] widely used in ANN or rate-based SNN 
are unable to handle precise-time-dependent information due to a 
fundamentally different neural processing, many proposals dedicated 
to the time-based learning have been developed [14], [26], [27]. 
However, these learning algorithms are neither hardware-favorable 
nor applicable for realistic tasks due to the expensive convergence and 
theoretical limitation. For example, in the unsupervised Spike-timing 
dependent plasticity (STDP) learning rule, the neural network struc­
ture and synaptic computation will be exponentially increased due to 
the expensive convergence and clustering. The proposed “Tempotron” 
and “Remote Supervised Method (ReSuMe)” can use the teaching 
spike to adjust desired spiking time for temporal learning, however, 
are not applicable to handle complicated patterns.

Our proposed “PT-Spike” is substantially different from previous 
studies: we explore how the time-based single-spike SNN archi­
tecture can be designed to perform the realistic tasks through a 
holistic efficient techniques spanning time-based coding, learning to 
decoding. A low cost and efficient temporal learning named “PT- 
Leaming” is augmented from the “Tempotron” learning by consider­
ing a synthesized contribution of the cost function and the hardware- 
favorable time-dependent kernel for weight updating. By integrat­
ing with proposed “Precise Temporal Encoding” and “Asymmetric 
Decoding”, “PT-Spike” can improve the accuracy, power, learning 
efficiency, and the model size reduction through the spatial-temporal 
information conversion significantly.

III. D e s i g n  D e t a il s

A. System Architecture

Fig. 2 shows a comprehensive data processing flow of proposed 
“PT-Spike”. First, the stimulus will be captured by the temporal 
perceptors to generate a sparse spike train (i.e. single spike) through 
“Precise Temporal Encoding”. Each spike train will be further 
modulated in temporal domain by a linear-decayed spiking kernel 
to form time-dependent voltage pulse. Second, those voltage pulses 
will be sent to the synaptic network for a weighting process, i.e. the 
memristor crossbar with IFC design can be employed for parallel 
processing. The output neurons will exhibit time-varying weighting 
responses due to the time-dependent input information. After that, 
the output neuron will fire a spike if the weighted post-synaptic 
voltage crosses a threshold voltage. Then spike trains from the output 
layer will be transmitted to the “Asymmetric Decoding”. Finally, 
the target pattern will be classified by analyzing the synchronized 
output spikes with a predefined asymmetric rule. During the learning 
procedure, desired spike patterns are coded by following the similar 
asymmetric rule during decoding. The detected errors will be sent- 
back for synaptic plasticity through “PT-Leaming”-a  supervised 
temporal learning algorithm.

B. Precise Temporal Encoding

As discussed in Section, n , in traditional rate coding, a large 
number of spikes within a proper time window will be needed 
to precisely indicate the amplitude of an input signal, i.e. the 
pixel density of visual stimulus. To maximize the power efficiency 
with minimized number of spikes, the input information will be 
represented as an extreme sparse train-single spike and its occurring 
delay in aforementioned coding approach. However, such a “one-to- 
one” mapping between each stimulus and spike train of each input 
neuron can lead to a significant energy overhead. Meanwhile, the 
time or temporal information of those spike trains are not fully 
leveraged by each neuron, resulting in limited coding efficiency 
thus a dramatical accuracy reduction. As we shall present later, our 
results on “MNIST” benchmark show that the “one-to-one” mapping 
achieves very unacceptable training accuracy ((~  20%) even under 
a large model size, that is, 784 input neurons for a 28 x 28 image.
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Fig. 2: The overview of “PT-Spike” system architecture.

Asymmetric Decoding

In “PT-Spike”, we further propose the “Precise Temporal Encod­
ing”. As shown in Fig. 2, the “Precise Temporal Encoding” is inspired 
from human visual cortex and Convolutional Neural Network (CNN), 
where a Temporal Kernel (i.e. a unit square matrix) will be applied on 
the full image to capture the spatial information and then translated 
into a single spike delay in temporal domain as a neuron input by 
perceiving the localized information from multiple interested pixels, 
i.e. spiking delay is equal to the average density among several 
selected pixels. In practice, by selecting a proper stride with which 
we slide the Temporal Kernel, e.g. smaller than the dimensionality of 
Temporal Kernel, a portion of localized spatial information will be 
shared by adjacent kernel sliding. Consequently, the spatial localities 
can be further transformed into temporal localities, thus to uniformly 
allocate the spiking delay assigned to each input neuron in time 
domain, translating into improved coding efficiency and classification 
accuracy.

Another unique advantage of the proposed “Precise Temporal 
Encoding” is to offer a flexible model size reduction. Different 
from traditional “one-to-one” mapping, various choices of model 
size reduction can be easily achieved by reconfiguring the size of 
Temporal Kernel. Fig. 3 illustrates such an interesting concept offered 
by “Precise Temporal Encoding”. Increasing the Temporal Kernel size 
can enrich the temporal information (see encoding time frame from 
T  =  16ms to T  = 256ms in Fig. 3), and hence reduce the needed 
spatial information or input neurons, e.g. 169 input neurons for “PT- 
Spike (16)” v.s. 49 input neurons for “PT-Spike (256)”. The training 
and inference accuracies will be slightly changed according to the 
selected Temporal Kernel size (see Section. IV).

C. Synaptic Processing and Linearized Spiking Kernel

Once the delay for the single spike is determined, as shown in 
Fig. 2, a spiking kernel K will be applied to shape the associated 
spikes for input neurons. The kernel plays an important role in the 
following synaptic weighting for the output voltage Vn (t), as shown

in Eq ( 1):
M  T

Vn (t) = Y J ™rnri y 2 K{-t - t ° )  (D
m  t s

where weight Vn (t) represents the voltage of output neuron n, Wmn 
denotes the synaptic efficacy between input neuron X m  and output 
neuron A n . t s is the decoded spiking delay of X rn. To provide 
sufficient and accurate temporal information for the classification, the 
exponential decayed post-synaptic potential in the biological spike 
response neural model [28] can be expressed as:

K i( t  -  t s) = p (e x p [ -( t -  t s) /n ]  -  exp[—(t -  t s) / r 2]) (2)

where r  ( n  and r2) denotes decay time constant, and p  is the 
normalizing constant. However, such an exponential decaying func­
tion requires expensive computation and hardware resource. In “PT- 
Spike”, we employ a more hardware-favorable kernel function K 2-a  
linear decaying function (see K \  and K 2 comparison in Fig. 2), to 
simplify the costly dual-exponential function K \\

K 2(t - t s) = 1 -  r ( t  -  t s) (3)

As we shall show in Section. IV, such a linear approximation cause 
very marginal classification accuracy degradation. Besides, this linear 
kernel function will be also applied to detect the input voltage 
contributions to the output spike in our proposed “PT-Leaming”.

D. Asymmetric Decoding

In ‘PT-Spike”, a novel Asymmetric decoding scheme, namely “A- 
Decoding”, is proposed for the classification. As the error signal 
critical for the proposed supervised temporal learning will be also 
generated through asymmetric decoding, we will discuss the “A- 
Decoding” technique first.

In rate-based SNN, the target pattern can be determined by the 
output neuron with highest spiking numbers. The costly weight 
updating will be performed in all synapses at each iteration of 
learning. The subsequent neural competition (weight conflict) among
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Fig. 3: Model size reduction through adjustable Temporal Kernel.
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different patterns can be rectified by enough information provided 
by the large number of input spikes. Hence a good classification 
accuracy may be achieved for all different patterns. However, the 
similar case cannot occur in our proposed “PT-Spike”, since its weight 
updating solely relies on the very limited number of spare spikes (e.g. 
a single spike) in temporal domain. In “PT-Spike”, we further propose 
the “A-Decoding” to alleviate the neural competition for accuracy 
improvement.

Fig. 4 illustrates the key idea of proposed “A-Decoding”, including 
pattern readout and error detection. Pattern {P i}  can be decoded 
based on the firing status of output neuron {A,}. In our asymmetric 
decoding, the output neuron can work on three different statuses: 
“firing”, “not firing” and “independent”, as shown in Fig. 4. Note 
“independent” means that the associated neurons will not participate 
in the learning process of a certain pattern, and it will only occur in 
learning mode.

In testing mode, the output neuron will be only in following two 
status: {1 — f i r in g / 0 — n o tfir in g } .  The target pattern is scanned 
according to the order of the first firing neuron. Assume a binary code 
NiN2N3 ■ ■ ■ Ni  is generated by output neurons {Ni},  a Huffman- 
style decoding procedure can be performed (See Fig. 4 left part). 
For example, if the first firing neuron is A 3, the corresponding code 
will be 001. Thus, the target pattern is P3. In “PT-Spike”, the early 
detection of testing, namely “Fire&Cut”, can be realized based on the 
temporal “winner-take-all” rule: Once the IFC of neuron A, triggers 
a spike, all the remained IFCs for other neurons will be shut down 
by following the “Fire&Cut Order”, which may save the additional 
power consumed by the IFCs.

In learning mode, a desired spike pattern is reversely generated 
according to the Huffman-style decoding of pattern {Pi} (See Fig. 4 
right part). Once a participated neuron N i triggers an unexpected 
firing or a missing firing, an error will be detected and only the synap­
tic weights of N i will be modified according to our proposed “PT- 
leaming”. Note only “partial” output neurons (NOT in“independent” 
status), will be involved during the learning of pattern {Pi}, namely 
‘Tartial Learning”. Such a mechanism significantly accelerates the 
learning procedure and saves power consumed by the unnecessary 
neural processing. Meanwhile, {Ai} is “asymmetrically” correlated 
with {Pi} and thus can ease the neural competition. For example, 
neuron Ai only engages in the synaptic plasticity of pattern Pi 
and will he ignored during the learning of all other patterns. As 
we shall show later, by taking advantages of “Fire&Cut”, “Partial 
Learning” and “Ease Competition”, our proposed “A-Decoding” can 
significantly enhance the weighting efficiency and learning accuracy.

E. PT-Leaming

Our proposed “PT-Leaming” coordinates with the aforementioned 
“A-Decoding” to capture the errors needed for synaptic weights 
updating. An error detected by the “A-Decoding” will be processed 
by “PT-Leaming” to generate corresponding weight changes and send 
back for synapse updating. As shown in Fig. 2, based on the actual 
and expected spiking pattern, two types of errors may occur in the 
output neuron: “false missing” and “false fire”. Here “false missing” 
means that the integrated voltage can not reach the threshold in output 
neuron to trigger the expected output spike, while “false fire” is 
defined as an undesired spike firing.

As shown in Algorithm. 1, once an error is detected, the error 
spiking time (T fai) and the cost function (E rr)  will be extracted 
from Tmax and Vth — Vmax. Here Vmax and Tmax are the maximum 
voltage amplitude and its occurrence time, respectively. A negative 
(positive) E rr  means a false- fire (missing). Hence, the gradient of 
E r r  with respect to each weight wc at pre-synaptic spiking time Tc 
can be calculated as:

d E rr
d w c

E n '  ^  '  i f  2 {'i'rnax  f  c )
Tc <Tmax

d V (Tmax ) dTmox 
Hi jrni'i: d W ( ; (4)

Algorithm 1: Post-Synaptic Processing
// Pseudocode of Asymmetric Decoding and PT-Leaming

1 Detecting:
2 foreach output neuron N t in [N j .. N {]  do
3 if  testing mode then
4 i t  firing  then
5 |_ return P ill “Fire&Cut”

6 else

7
8 
» 
10

// learning mode
if  N i is independent to Pi then 

| return// “Partial Learning” and “Ease Competition” 
else if  actual firing pattern f-  desired pattern  then 

|_ call L e a r n i n g / Tm ax)

11

12
13
14
15
16
17

18 
19

Learning:
// change synaptic weights of Aj
Err <— Vth — Vmax
T fa l t Tmax
foreach input neuron X c in [X±  .. X m ]  do 

if  K 2(T fal -  Tc) ^  0 then 
| continue// “Partial Updating” 

else
// pre-spiking at Tc contributed to post-spiking 
Aw 4— \E r r K 2(Tfai —Tc) 
wci <- Aw  +  wci

Here K 2 is the linear decayed spike kernel defined in Eq.( 3).
As pre-synaptic spikes are weighted through synaptic efficacy w c 

before Tmax, BVer™ *^  = 0- By further considering E r r  into the 
change of w c, A wc can be expressed as:

A w c =  X E rr  ^  K 2{Tfa i - T c) (5)
Tc<Tfa,

where A denotes the learning rate and spike kernel K 2 can be used 
again to calculate the contributions from the input neuron X c at time 
Tc.

As discussed in “A-Decoding”, only partial output neurons will be 
involved during the learning of a certain pattern, meaning that only 
partial synaptic weights will be updated. The dual-level acceleration, 
contributed by both “A-Decoding” and “PT-Leaming”, can improve 
the learning efficiency significantly. As we shall show later, the synap­
tic computation can be reduced more than 200% when compared with 
the standard learning approach without accelerations. Moreover, “PT- 
Leaming” together with “A-Decoding” can boost the accuracy for 
realistic recognitions task significantly.

IV. E v a l u a t io n s

To evaluate the accuracy, processing efficiency and power con­
sumption of our proposed “PT-Spike” neuromorphic architecture, 
extensive experiments are conducted in the platforms like MATLAB 
and heavily modified open-source simulator-Brian [29].

A. Simulation Setup

In our evaluation, a full MNIST database is adopted as the 
benchmark [30]. A set of “PT-Spike” designs-“PT-Spike(R)” are 
implemented to demonstrate the leveraged temporal encoding where

TABLE I: Structural Parameters of Selected Candidates.

Candidate Number of Number of Number of neural processing
input neurons output neurons synaptic weights time-frame T

PT-Spike(4) 196 10 1960 4ms
PT-Spike(16) 169 10 1690 16ms
PT-Spike(25) 144 10 1440 25ms
PT-Spike(lOO) 100 10 1000 100ms

Diehl-15 784 100 78400 500ms
Lecun-98 784 10 7840 -
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Fig. 5: Accuracy Evaluations for Difference Candidates and Design Optimizations.

“R” denotes the number of interested pixels per input neuron or the 
size of Temporal Kernel in proposed “Precise Temporal Encoding”. 
We also assume the encoding time frame (T) is T  = t  x R (m s), 
where r  =  l(m s) is the fixed minimum time interval to fire the spike. 
The maximum temporal information T  can be adjusted by tuning the 
parameter R. The number of input neurons (spatial domain) can be 
expressed as M  =  [ J’~ v ^ +1~|2, where P  and S  represent the width 
of an input image and the stride with which we slide the Temporal 
Kernel. P  =  28 and S  =  2 are selected in our evaluations of 
MNIST dataset. Two representative baselines under similar network 
configurations, including the rate-coded SNN-“Diehl-15” [31] and 
the ANN-“Lecun-98” [32], are also implemented for the energy and 
performance comparisons with proposed “PT-Spike”.

Table. I presents the detailed structural parameters of selected 
candidates. Compared with the “Diehl-15” and “Lecun-98”, our 
proposed temporal encoding achieves significant model size reduction 
for all “PT-Spike” designs, i.e. ~  40 x (“PT-Spike(4)” v.s. “Diehl- 
15”) and ~  4x  (“PT-Spike(4)” v.s. “Lecun-98”).

B. Accuracy

Fig. 5a shows the accuracy comparison among different “PT-Spike 
(R)”, “Lecun-98” and “Diehl-15”. “PT-Spike(25)” can achieve very 
comparable accuracy at much lower cost (~  86%, 1440 synaptic 
weights) when compared with “Diehl-15” (~  83%, 78400 synaptic 
weights) and “Lecun-98” (~  88%, 7840 synaptic weights). Mean­
while, “PT-Spike(16)” and ‘PT-Spike(25)” also show a very close 
accuracy (~  87% and ~  86%), which is much better than “PT- 
Spike(4)” and “PT-Spike(lOO)” (~  63% and ~  70%).

We also evaluated the individual training accuracy improvement 
contributed by various proposed techniques, such as “linearized 
spiking kernel”, “Precise Temporal Encoding”, “A-Decoding” and 
“PT-Leaming”, receptively. Here, we choose the “PT-Spike(16)” as 
the baseline design that employs all aforementioned techniques. 
“Exponential Kernel”, “one-to-one mapping”, “non A-Decoding” and 
“Tempotron” denote the designs that substitute only one out of the 
four techniques. As shown in Fig. 5b, “PT-Spike(16)” shows a very 
marginal accuracy degradation (0.2%) because of the “linearized 
spiking kernel” (K 2 in Eq.( 3)) when compared with the original

costly “Exponential Kernel” design (86.9%, K i  in Eq.( 2)). Fur­
thermore, “PT-Spike(16)” boosts the accuracy by ~  400%, ~  19% 
and ~  38% when compared with the designs of “one-to-one map­
ping” (~  21%), “non A-Decoding” (~  68%), and the theoretical 
“Tempotron” learning rule (~  49%), respectively, which clearly 
demonstrates the effectiveness of the proposed “Precise Temporal 
Encoding”, “A-Decoding” and “PT-Leaming”.

C. Processing Efficiency

The occurrence frequency of synaptic events is calculated to 
evaluate the system processing efficiency, including both weighting 
and weights updating. Fig. 6a compares the number of weighting 
operations among three designs in the feed-forward pass. Unlike the 
other candidates, the amount of weight operations of “PT-Spike(16)” 
is different between training and testing due to the “Fire&Cut” 
mechanism in“A-Decoding”. Hence, the weighting of the first testing 
iteration is also included in “PT-Spike(16)”. Even the “non A- 
Decoding”, i.e. “PT-Spike(16)” without the “A-Decoding” technique, 
gains ~  185 x weighting operation reduction as compared with 
“Diehl-15” since rate-coded SNN requires a long time window 
to process the spikes with enlarged neuron model size, causing 
tremendous weighting processes on each time slot. Compared with 
“non A-Decoding”, weighting operations of “PT-Spike(16)” can be 
further reduced by ~  28% and ~  69% in first training iteration 
and testing iteration, respectively. As expected, the “early-detection” 
working mechanism in “A-Decoding” removes many unnecessary 
weighting operations on both “initialized” weights and “well-trained” 
weights.

We also characterize the occurrence frequency of weights up­
dating during the first training iteration to evaluate the processing 
efficiency in the feed-back pass. As Fig. 6b shows, even “Worst 
Case” (i.e. “PT-Spike(16)” without employing “A-Decoding” and 
“PT-Leaming”) achieves ~  4.6 x and 40 x reductions on weights 
updating per image and per error, respectively, when compared 
with “Diehl-15”. Such impressive improvement is introduced by the 
significant compressed model size. Moreover, compared with the 
“worst case”, “PT-Leaming” and “A-Decoding” contribute ~  2x and 
~  4x  weights updating reduction per error and per image for “PT-

'DM«-»- PT-SpiMll*) non -frUKOdlns-
Ave rage efficiency of feed-forward processing per Image Average efficiency of feed-back processing Average Spike Activities in Testing iteration

(a) Feed-forward Efficiency per Input Image. (b) Feed-back Efficiencies. (c) Power Consumptions (a Joules /spike).

Fig. 6: Processing Efficiency and Power Consumption
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Spike(16)”, respectively, demonstrating the effectiveness of “dual­
level acceleration” from decoding and learning.

D. Power Consumption

To roughly evaluate the power efficiency contributed by the 
proposed architecture, we adopted a similar methodology used in
[7], [18]. A new candidate “Minitaur” [8] is introduced for a fair 
comparison since it is a more hardware-oriented rate-coded SNN. As 
Fig. 6c shows, “PT-Spike(16)” saves ~  8x  and ~  64x power for 
each input neuron and each input image over “Diehl-15”, respectively, 
indicating the efficiency of our proposed single-spike coding tech­
nique. Compared with the hardware-oriented rate-coded SNN design 
“Minitaur”, “PT-Spike(16)” can still achieve ~  1.4x (~  6 .6x) power 
reduction on each input neuron (input image).

E. Discussions

The research of the time-based SNN represented by extreme sparse 
spikes, i.e. single spike design, is still in its infancy, and to our 
best knowledge, we have not seen any exemplar large networks 
successfully demonstrated for performing the realistic cognitive tasks. 
Due to the unique time-based learning and information representation, 
the research in this area is quite challenge and unique. In this 
work, we adopt a proof-of-concept simple design, i.e. Single-Layer 
Perceptron to illustrate the design optimizations of the time-based 
SNN, and demonstrate its potentials for realistic applications,though 
the classification accuracy is still lower than that of state-of-the art 
DNNs and CNNs.

Extending our design to multi-layered network will enhance its 
capability to handle more complicated cognitive tasks, however, is 
non-trivial, as a multi-layer learning rule needs to he developed 
to facilitate the spatial information transfer among different layers. 
While our proposed approach cannot be directly applied for the multi­
layered network in its current form, the novel techniques proposed 
in this paper, i.e. “Temporal Kernel Coding”, “PT-Leaming” and “A- 
Decoding” form the basis for the time-based multi-layer network. 
We believe the initial architecture developed in this paper will serve 
as a basic framework to the multi-layer network design, and may 
encourage more interesting researches in this domain.

V. C o n c l u s io n

As the rate-based spiking neural network (SNN) is subject to power 
and speed challenges due to processing large number of spikes, in this 
work, we systematically studied the possibility of utilizing the more 
power-efficient time-based SNN in real-world cognitive tasks. Three 
integrated techniques-precise temporal encoding, efficient supervised 
temporal learning and fast asymmetric decoding, were proposed to 
construct the Precise-Time-Dependent Single Spike Neuromorphic 
Architecture, namely, “P T - S p ik e The single-spike temporal en­
coding offers an energy-efficient information representation solution 
with the potentials of model size reduction. The supervised learning 
and asymmetric decoding can work cooperatively to deliver a more 
effective and efficient synaptic weight updating and classification. Our 
evaluations on the MNIST database well demonstrate the advantages 
of “PT-Spike" over the rate-based SNN in terms of network size, 
speed and power, with a comparable accuracy.
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