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Abstract—Thanks to recent machine learning model innovation and 
computing hardware advancement, the state-of-the-art of Deep Neural 
Network (DNN) is presenting human-level performance for many complex 
intelligent tasks in real-world applications. However, it also introduces 
ever-increasing security concerns for those intelligent systems. For exam­
ple, the emerging adversarial attacks indicate that even very small and 
often imperceptible adversarial input perturbations can easily mislead 
the cognitive function of deep learning systems (DLS). Existing DNN 
adversarial studies are narrowly performed on the ideal software-level 
DNN models with a focus on single uncertainty factor, i.e. input per­
turbations, however, the impact of DNN model reshaping on adversarial 
attacks, which is introduced by various hardware-favorable techniques 
such as hash-based weight compression during modern DNN hardware 
implementation, has never been discussed. In this work, we for the first 
time investigate the multi-factor adversarial attack problem in practical 
model optimized deep learning systems by jointly considering the DNN 
model-reshaping (e.g. HashNet based deep compression) and the input 
perturbations. We first augment adversarial example generating method 
dedicated to the compressed DNN models by incorporating the software- 
based approaches and mathematical modeled DNN reshaping. We then 
conduct a comprehensive robustness and vulnerability analysis of deep 
compressed DNN models under derived adversarial attacks. A defense 
technique named “gradient inhibition” is further developed to ease the 
generating of adversarial examples thus to effectively mitigate adversarial 
attacks towards both software and hardware-oriented DNNs. Simulation 
results show that “gradient inhibition” can decrease the average success 
rate of adversarial attacks from 87.99% to 4.77% (from 86.74% to 4.64%) 
on MNIST (CIFAR-10) benchmark with marginal accuracy degradation 
across various DNNs.

I. In t r o d u c t io n

As one of the most fascinating techniques when we are entering 
the era of Artificial Intelligent (AI), Deep Neural Networks (DNNs) 
are penetrating the real world in many exciting applications such 
as image processing, face recognition, self-driving cars, robotics and 
machine translations etc. Nonetheless, all this success, to great extent, 
is enabled by introducing the powerful data analysis capability of 
state-of-the-art large-scale DNNs with deep and complex structures 
and huge volume of model parameters, significantly exacerbating 
the demand for computing resource and data storage of hardware 
platforms. As an example, the large-scale image classification im­
plementation of famous deep convolutional neural network (CNN) 
“AlextNet” involves 61 million parameters off-chip memory accesses 
and 1.5 billion high precision floating-point operations [1],

Fortunately, recent hardware engine innovation enables the im­
plementations of those once “conceptual” DNN software systems 
in both high-performance computing and resource-limited embedded 
platforms for performing various intelligent tasks [2], [3], [4]. Many 
hardware-favorable DNN architectures along with various DNN 
model optimization techniques are developed to accelerate dedi­
cated computations on general-purpose platforms like GPU [5] and 
CPU [6], domain-specific hardware like FPGA [7], and customized 
ASIC, e.g. recent Google Tensor Processing Unit (TPU) [8], [9], [10],

While DNN’s broad and positive impacts along with its impressive 
hardware advancement excite multiple industries in myriad ways, 
it also brings about ever-increasing security challenges. Since the 
classification results of DNN systems are usually derived from the 
probabilities [11], [12], the attackers cam easily compromise system 
security by exploiting specific vulnerabilities of learning algorithms
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or classifiers through a careful manipulation of the input data samples, 
namely adversarial examples, i.e. circumvent anomaly detection, 
misclassify the adversarial images at testing time [13] or adversarially 
manipulate the perceptual systems of autonomous vehicles to the 
misreading of road signs, thus causing potential disastrous conse­
quences [14]. Hence, safeguarding the security of DNN systems has 
become an urgent task.

Many DNN adversarial researches have been conducted, including 
adversarial example generating [13], [15], robustness analysis [16] 
and mitigation techniques [13], [17], [18], However, existing adver­
sarial studies focus only on software-level DNN models by (over-) 
simply assuming that the input perturbations are the only uncertain 
factor under unchanged software-level DNN models. The additional 
DNN model change, e.g. non-linear weights reshaping to largely com­
press DNN scale [19], [20], [21], [22], which is inevitable because of 
the hardware resource constraints during DNN deployment, is often 
neglected. As we shall present in section HI, the adversarial attack to 
practical DNN systems will be a multi-factor problem rather than the 
ideal single-factor problem from crafted adversarial inputs. Since the 
realistic tasks often need to be executed in DNN hardware systems 
with extra efforts on model compression, discovering the nature of 
more realistic adversarial attacks, as well as developing effective 
countermeasures to protect such practical learning systems will be 
of critical importance at the early stage of DNN applications.

In this work, we for the first time formulate the multi-factor 
adversarial attacks tailored for the practical deep learning systems 
by integrating the mathematical modeled DNN model reshaping 
(take hash-based DNN weight compression as an example) and 
the input perturbations. We then for the first attempt to sys­
tematically analyze the interplays among the hash compression 
ratio, the amplitude of input perturbations, adversarial attack 
successful rate and accuracy through extensive experimental and 
theoretical studies. Interestingly, we discover that the hash-based 
deep compressed DNN models can be somewhat less vulnerable to 
adversarial attacks because of the reshaped weight distribution when 
compared to the uncompressed software-DNN models. Inspired by 
this observation, a defense technique named “gradient inhibition” is 
further proposed to suppress the generating of input perturbations 
thus to effectively prevent the adversarial attacks for deep learning 
systems. Experimental results show that “gradient inhibition” can 
reduce the success rate of adversarial attacks from 87.99% to 4.77% 
(from 86.74% to 4.64%) on average on MNIST [23] (CIFAR-10 [24]) 
benchmark while maintaining the same level of accuracy across 
various DNNs.

II. P r e l im in a r y  

A. Basics o f Deep Neural Networks

Deep Neural Network (DNN) introduces multiple layers with 
complex structures to model a high-level abstraction of the data [25], 
and exhibits high effectiveness in cognitive applications by leveraging 
the deep cascaded layer structure [1], [26], [27], For example, a 
typical modem DNN often consists of following types of layers: The 
convolutional layer extracts sufficient feature maps from the last layer 
by applying kernel-based convolutions, the pooling layer performs a 
downsampling operation (max or average pooling) along the spatial 
dimensions for a volume reduction, and the fully-connected layer
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Fig. 1: Illustration of model reshaping in an example HashNet.
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Fig. 2: Illustration of adversarial examples

further computes the class score based on the final weighted results 
and the non-linear activation functions.

B. Model Reshaping

As modem DNNs become more powerful with an ever-increasing 
model size, i.e. 60M to even 10B parameters to represent the weight 
connections [28], [29], [22], reducing their storage and computational 
costs becomes critical to meet the requirement of practical applica­
tions in hardware-oriented DNNs with limited resources, i.e. ASIC 
or FPGA. Therefore, removing the redundancy of DNN models has 
become a “must-have” step in deep learning system design [22].

Many studies are preformed to reshape the DNN models to­
wards affordable hardware implementations, including network prun­
ing [21], [22], HashNet [19], [20], etc. Those solutions can effectively 
compress the weights through some non-linear transformations. Take 
the HashNet adopted in this work as an example, a hash function 
is selected to randomly group connection weights into hash buckets. 
All connections within the same hash bucket share a single parameter 
value. Therefore, the needed memory to store the weights can be 
significantly reduced. Figure 1 demonstrates the idea of an example 
HashNet for achieving significant storage reduction with limited 
accuracy loss. The original weights are converted to real weights by 
a random hash procedure. The real weights together with the hash 
index which are physically stored in the DNN hardware only cost 
~  20% memory space compared to that of original (virtual) weights.

C. Adversarial Examples

Adversarial examples are maliciously crafted inputs dedicated to 
mislead the DNN classification by introducing small input perturba­
tions. The generating of adversarial examples can be modeled as an 
optimization problem:

argm in  || S x  || s.t. F  ( X  +  5x) =  Y*  (1)

Here F  represents the function of target DNN model, and is usu­
ally determined by the detailed DNN configurations such as the 
architecture and the weight. Y* is the distorted output which is 
different from the correct output Y . X *  =  X  + S x  denotes the 
adversarial example perturbed by Sx- Hence the question becomes 
how to solve the optimization problem to find the minimized Sx- 
The common approach to derive adversarial examples is to extract 
adversarial perturbations S x  from the gradient information, since the 
gradient is a good measurement for the output response difference 
with respect to variations introduced in each dimension of an input 
vector. Hence, there are two gradient-based methods to generate 
adversarial examples from software DNN models: Fast Gradient Sign 
Method (FGSM) [13] and Jacobian-based Saliency Map Approach 
(JSMA) [15]. The former adds a small perturbation in the direction 
of the sign of the gradient of the loss function with respect to the input 
of the DNN to all input dimensions, while the latter only distorts the 
most significant input features based on the salience map extracted 
from gradient of model function w.r.t. inputs-Jacobian matrix.

Figure 2 shows a conceptual view of FGSM based adversary on 
a representative DNN model-“AlexNet” with perturbation parameter 
e =  0.005. The image originally correctly classified as “Dog” by

the “AlexNet” (65% confidence) is now misclassified as “Bear” with 
a much higher confidence (95%) due to the slightly polluted input. 
However, such an adversarial example is so close to the original 
image that the differences are indistinguishable to human eyes.

III. A t t a c k  D e s ig n

To analyze the vulnerabilities of practical deep learning systems 
under adversarial attacks, we first present the threat model, followed 
by an attack methodology developed for conducting adversarial 
attacks over the hash-based deep compressed DNN models.

A. Threat Model

In this work, we adopt a white-box adversarial attack model. We 
assume that the attacker has full access to all target compressed 
/non-compressed DNNs, training and testing dataset. The objective of 
adversarial attack is to mislead the classification of an original class 
to a different target, i.e. original ^  target. To conduct the attack, the 
attacker first acquires the DNN model information such as weights, 
cost function, hash compression, gradient with normal input etc. 
Then the imperceptible perturbations are calculated through derived 
adversarial crafting algorithms and injected into normal inputs to 
generate adversarial examples. Finally, the adversarial examples will 
be sent to compressed/non-compressed DNN models, fooling the 
deep learning systems with adversarial classification results.

B. Adversarial Attack Design

To exert effective adversarial attacks to practical deep learning 
systems, our first step is to extend the single-factor adversarial 
examples generating algorithm to the multi-factor version based 
on the augmentation of software-model oriented FGSM and JSMA 
approaches by taking mathematical characterized hash-based deep 
compression into consideration. Then a synthesized attack method­
ology is presented as our basis for security analysis and robustness 
evaluation.

1) Multi-factor Adversarial Example Generating

To better illustrate how the adversary generating will be altered by 
the input perturbation and model reshaping in deep learning systems, 
the adversarial attack is again modeled as an optimization problem:

argm in  || S x H || s.t. FH {X  + SxH) =  Y*  (2)
s* h

where Fh  represents the hardware-oriented hashed DNN model 
derived from its software version (or uncompressed DNN model) F  
with marginal accuracy reduction. Y*  is the distorted output which 
is different from the correct output Y.  Apparently, the minimum 
input perturbations of Fh  (Sx h ) will be less likely to be equal 
to that of ideal software DNN model, i.e. F  (Sx),  even for the 
same adversarial target Y*\ m in S x H /  m in S x  because of the 
model reshaping (Fh  F). If we define W  and W h  = <p (W )  
as the weight matrix of DNN model F  and Fh , the activation output 
will be W  (X  + S x)  and ip (W ) ( X  + S x H), respectively, where 
p  (W )  denotes a hardware-oriented weight transformation-hashing in 
HashNet. Since the hardware-oriented model reshaping should always 
minimize the accuracy loss, the corresponding results after activation
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/  should be f ( W X )  «  f  (ip (W) X ) .  However, the DNN output 
perturbations will be changed from f ( W 5x )  to f  (<p (W)  S x „ )  
accordingly. Even for the same adversarial example (SxH =  6x),  
the responses from the two models will be quite different. Different 
from the single uncertainty factor assumption, i.e. input perturbations, 
adopted in the software DNN models, the compressed version of 
adversarial attacks will be more complicated and become a multi­
factor problem due to the additional weight transformations.

As the foundation for hardware-oriented adversarial example gen­
erating, we first mathematically model the deep compressed DNN 
model-HashNet. In HashNet, the derived classification output a*+1 
for neuron i in layer l +  1 and the gradient (£j) of loss function C 
over activation j  in layer l can be presented as:

,1+1

where h* l ( i , j )  is the hash function associated with the weights 
in layer l and £l{i , j )  : N —> ± 1  is the second hash function 
independent of h for sign function to remove the bias of hashed inner- 
products caused by collisions [30], / '  (■) represents the first derivative 
of activation function /  (■), and z lj  is the result before activation 
function. The weight transformation function will be modeled as 
tp (W)  = Wh O  £ by introducing the two hash functions h  and £. 
Here Q  denotes the elementary multiplication and the compression 
rate can be set by tuning £. Accordingly, augmented from the FGSM, 
we can derive the Hardware-oriented Fast Gradient Sign Method 
(HFGSM) dedicated to HashNet as:

X AE =  X  +  esign(V  x  J  (X) )  (5)

where, the gradient can be calculated as:

J v *  J ( X )  =  s i r  .{ ‘- ‘ ( i , ; « - ’

\ i S =  (E 1 T  « 4 .,, , , , ? < « ) « ■ « ) / ( 4 )  m

where e is the amplitude coefficient of perturbations, V x  J (X )  is 
the gradient of loss function J  w.r.t. input X .

Similarly, the Hardware-oriented Jacobian-based Saliency Map 
Approach (HJSMA) for HashNet can be further developed with the 
same weight transformation but forward derivative gradient that can 
be obtained from the result of output layer. Thus an “adversarial 
saliency map” that indicates the correlation between inputs and 
outputs can be calculated from the gradient V XiF(x):

q ( x  = J 0 if V x tFt {X) < 0 or £ o / t  V XiFa(X) > 0 
1 { V x tFt ( X ) \ j : ô V x t F0(X)\  otherwise

(7)
where each element of saliency map S ( X ,  f)[i] for a false target 

class t  is obtained based on the rule of rejecting input components 
with negative target derivative or an overall positive derivative on 
other classes o, otherwise accepting input components based on 
synthetic results of positive target derivative and all the other forward 
derivative components together. Therefore, only the input features 
corresponding to large values of S(X,  t)[i] in saliency map can 
be identified for adding adversarial perturbations, thus to efficiently 
mislead the classification result to a certain target.

2) Attack Methodology

To facilitate comprehensive adversarial attacks for the deep com­
pressed DNN model, we develop a synthesized attack methodology 
by integrating the derived HFGSM and HJSMA approaches. As

Algorithm 1: Adversarial Attack Methodology
// O is the inference on target DNN model 
// 1Z is the random selected inputs for a round of attack 
// e is the amplitude coefficient of perturbation in HFGSM 
// i is the number of perturbation elements in HJSMA

1 foreach x e TZ do
// get the original input X and inference result Y

2 D{X ,Y)  <- {{S,0{x ))Uetl}
II calculate the gradient s.t. input X

3 V x J  4— Equation 6
// generating perturbation

4 SXh +- HFGSM(Vx  J) or HJSMA(VX J )
s X* = X  + SX[I

6
7

»

10
11

// perform inference using adversary as input 
Y* -f- 0(X*)  
i l Y  = Y* then

// the adversarial attack is not success 
if e or i < predefined upper-bound then 

increase e in HFGSM (Equation 6) or 
increase i in HJSMA (Equation 7) 
GOTO: line 4

12 else
13 |_ adversarial success counter += 1

Algorithm 1 shows, an upper-bound of the perturbation amplitude 
coefficient e in HFGSM (see Eq. 6) or the number of perturbation 
elements i in HJSMA (see Eq. 7) will be predefined to guarantee 
that the crafted adversarial perturbations can be maintained at an 
imperceptible level, which is more desirable in practical attacks. A 
randomly selected original input-output pair (X, Y )  will be recorded 
and compared with the adversarial input-output pair (X*, Y*).  The 
adversarial example generating process will be terminated once a 
successful adversarial attack happens, i.e. Y  -f Y*,  otherwise e or
i will be increased until reaching the respective upper-bound. The 
success rate of adversarial attacks will be adopted as a measurement 
in our following security analysis.

IV . S e c u r i t y  A n a l y s is

We conduct the multi-factor adversarial attacks on the fol­
lowing tailored DNN model (i.e. 784-C64-C128-F512-10) applied 
with HashNet model reshaping by following the proposed attack 
methodology. A full MNIST database is adopted as our benchmark 
for a comprehensive analysis of attacking effectiveness in deep 
compressed/non-compressed deep learning systems.

A. Effectiveness o f Multi-factor Adversarial Attacks

We first designed several hash compressed DNN models-HashNets 
with different compression rates (from |  to based on the afore­
mentioned uncompressed DNN model. To make a fair adversarial 
attack analysis, our HashNets minimize the testing accuracy degra­
dation (with normal input data without adversarial perturbations) 
introduced by weight compression. As shown in Fig. 3, the testing 
accuracy on HashNets is only slightly decreased as the compression 
rate increases (i.e. 99.25% at rate |  v.s. 99.13% at but still very 
close to the uncompressed model (99.29%).

Accuracy(K)

99.29

99.13

99.05 99.1 99.15 99.2 99.25 99.3 99.35

Uncompressed HashNet(l/8) ■ HashNet(l/16} ■ HashNet{l/32) HashNet(l/64)

Fig. 3: Testing accuracy without adversarial perturbations.
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Fig. 5: Success rate of multi-factor adversarial attacks with HJSMA approach.

Fig. 4 shows the success rate of multi-factor adversarial attacks 
implemented with HFGSM method at various compression rates (i.e. 
HashNet(|) —y H ashN et(^) over different perturbation amplitude 
coefficients. For comparison purpose, the results of the uncompressed 
DNN model-the common basis of different HashNets, under the 
original single-factor based FGSM attacks are also presented. As 
expected, the attack success rates of both uncompressed DNN model 
and various compressed models are increased monotonically along 
with the growing perturbation amplitude coefficient, i.e. e =  0.1 —> 
0.5. This is because the attacking capability of crafted adversarial 
examples can be significantly enhanced by larger input perturbations 
(see e =  0.5) for all DNN models regardless of the model reshaping. 
However, for each individual e, the attack success rates of any 
HashNet models are always lower than that of uncompressed model. 
Moreover, the higher the compression rate is, the lower the attack 
success rate will be at each e. We also conduct the same set of 
experiments under HJSMA based adversarial attacks. Again, our re­
sults in Fig. 5 demonstrate the similar trend at different combinations 
of compression rate and the number of perturbation elements, i.e. 
the attack success rates are decreased when increasing compression 
rate on HashNet at each selected number of perturbation elements. 
Surprisingly, these results indicate that the hash compressed DNN 
model, which have significantly reduced number o f model parameters 
fo r  affordable hardware implementation (see Fig. 1), exhibits better 
resistance to adversarial attacks than that o f its uncompressed or less 
compressed version. This is in contrast to the empirical intuition that 
the more compressed DNN models should be more susceptible to the 
input perturbations.

Since the compressed DNN models maintain the similar level of 
the stability (or testing accuracy in Fig. 3) as that of uncompressed 
model, a reasonable explanation for the attack success rate reduction 
is that the destructiveness of crafted adversaries may be alleviated 
in HashNets when compare with those generated in uncompressed 
DNN model. That is being said, the effectiveness o f multi-factor 
adversary attacks depends on the perturbation amplitude coefficient e 
in HFGSM (or the number o f perturbation elements i  in HJSMA) and 
the compression rate, as we shall discuss in the following section.

B. Theoretical Analysis o f Adversarial Attacks on Hashed DNNs

To validate our hypothesis and deeply understand the relationship 
between adversary and model reshaping, we characterize the two 
critical components for adversary example generating in compressed 
models: weight and gradient amplitude under various compression 
rates. Fig. 6 compares the distributions of weights for uncompressed 
and two compressed DNNs-HashNet ( ^ )  and HashNet ( ^ ) .  As 
Fig. 6 shows, the model with a higher compression rate yields a 
larger range of weights (i.e. ~  2x and ~  4x  in HashNet (y^) 
and HashNet (g^) w.r.t. uncompressed model). Given significantly 
decreased number of unique weights (or increased compression rate) 
introduced by hash-based weight sharing mechanism, the weight 
distribution in compressed DNN model shall be much broader since

such model has to re-balance the activations through enlarged weights 
during training to achieve an accuracy close to that of uncompressed 
model. However, such weight transformation can directly impact the 
gradient, thus the strength of generated adversaries.

Without loss of generality, we use the output layer with softmax 
activation to roughly explain the underlying principle. The final 
activation of output layer can be calculated through the following 
Softmax function:

n * ) EL (8)

where the input Zj of Softmax function can be expressed as:
n

Zj =  (9)
¿=i

Note that we omit the bias because it can be included in weight by 
adding an additional connection with weight as the bias and a constant 
input 1. Since the Softmax function increases monotonically as the 
input Zj grows, the enlarged weights in highly compressed models 
can possibly augment the desired activations but suppress the 
others, thus a possible stronger confidence for the final decision.

If we use FGSM based adversarial example generating algorithm 
as an example, the cross-entropy loss function and its gradient w.r.t. 
input can be obtained as:

J ( x i , t j )  =  -  ^ 2  t j  logF(z j )  (10)
3=1

V x i J { x i , t j ) — 'y ' w j j (F(z j )  t j )  (11)
J=1

where Xi is the i th input and t j  is the target for j th class. Consider 
the F(z j )  is an exponential function of Wji, the absolute gradient 
amplitude will be dominated by term ( F ( z j ) - t j ) .  With the enlarged 
weights in compressed models, the activation F(z j )  may be 
closer to t j ,  thus a possible reduced gradient and perturbation 
amplitude, meaning alleviated adversarial severity. Fig. 7 shows 
the distributions of absolute value of mean gradient over uncom­
pressed and compression DNNs with different compression rates. The

Fig. 6: The weight distributions for uncompressed DNN and two HashNets.
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Fig. 8: Inference accuracy of CIFAR-10 with Gradient Inhibition

proportion of large gradients (10-10 ~  1) is reduced from ~  68% 
(uncompressed model) to ~  19% (HashNet(±)) as compression rate 
grows, while that of small gradients (10_2S ~  10-15) is increased 
from ~  1% to ~  32%, which is in excellent agreement with our 
theoretical analysis and validates the degraded attack capability of 
compressed DNNs compared with the uncompressed version.

V. M it ig a t io n  A p p r o a c h

In our security analysis, we show that the magnitude of weights 
in DNNs becomes a new factor that can significantly impact the 
the severity of adversarial attacks. Hash-based weight compression 
enlarges the magnitude of weights, thus to prevent the generating 
of stronger adversarial examples. However, its effectiveness is very 
limited, e.g. <  30% success rate reduction at any perturbation ampli­
tude coefficient in Fig. 4, because the weight enlargement, introduced 
by non-linear weight transformation, can only be guaranteed at a 
certain probability (see Fig.6). Inspired by this observation, a novel 
mitigation technique named Gradient Inhibition is further proposed 
to effectively mitigate the adversarial attacks.

A. Gradient Inhibition method

Our proposed Gradient Inhibition intends to control the weights 
linearly with enlarged magnitude guarantee for each weight:

w =  w +  t  * sign(w) (12)

where r  is the inhibition coefficient. Different levels of weight 
enlargement can be achieved by a fine-grained control parameter r  
for both positive and negative weights, thus to minimize the gradient 
needed for adversarial perturbations generating and effectively miti­
gate or even eliminate the threats of adversarial attacks for DNNs.

Another advantage of Gradient Inhibition method is its low im­
plementation cost applicable to both software or hardware-oriented 
compressed DNN models. Gradient Inhibition can be applied at any 
layer after the training process. Our practice is to deploy this method 
at the layers close to the output layer (i.e. the last fully connected 
layer) for higher attack rate reduction but lowest accuracy loss due 
to the usually moderate number of weights and strongest impacts on 
decision making.

B. Evaluation o f Gradient Inhibition

1) Experiment Setup

Various HashNets and MNIST benchmark [23], which are used 
in section IV, are adopted in our experiment to evaluate efficiency 
of Gradient Inhibition. Additionally, the CIFAR-10 database [24] 
is selected as a new benchmark in our evaluation, including 60K 
32x32 color images in 10 classes, 50K for training and 10K for 
testing. As shown in Table. I, four representative DNN models with

Candidate Models DNN1 DNN2 DNN3 VGG-16
Relu Convolutional 4 layers 6 layers 9 layers 13 layers
Relu Fully Connected 2 layers 2 layers 2 layers 3 layers
Max Pooling 2 layers 3 layers 3 layers 5 layers

TABLE I: Architectures of selected neural network candidates.

different architectures, including state-of-art VGG-16 [26], are chosen 
to verify the feasibility and scalability of Gradient Inhibition across 
various types of DNN models. We assume the adversarial examples 
are generated through the FGSM and HFGSM for uncompressed and 
compressed models, respectively.

2) Inference Accuracy

An effective mitigate technique against adversarial attacks should 
not impact the functionality of the DNN models integrated with mit­
igate techniques. Before we evaluate the effectiveness, we first verify 
the inference accuracy changes introduced by Gradient Inhibition. As 
shown in 8, the inference accuracy on CIFAR-10 database for each 
DNN model implemented with Gradient Inhibition is always at the 
same level as that of its corresponding model without such technique 
at different inhibition coefficients. We also find the similar accuracy 
trend in Hash compressed DNNs with different compression rates 
for the MNIST dataset. Note that the adopted inhibition coefficient 
t  =  0.1 —> 0.5 can introduce flexible weight adjustments, i.e. 
±0.1 —> ±0.5, with very minor accuracy change.

3) Gradient Inhibition Efficiency

Fig. 9 shows the statistics of suppressed gradients across various 
inhibition coefficients for an uncompressed DNN model testing 
the MNIST dataset. As shown in Fig. 9, even with a very small 
adjustment on original weights, i.e. inhibition coefficient r  = 0.01, 
the gradient amplitude can be much lower than the one generated on 
H ashN et(^) in Fig. 7, which is the best case in compressed DNN 
models. Note that in H ashN et(^), the range of weights has been 
enlarged from ±0.1 to ±0.4  (see Fig. 6), which is far exceed that 
of ±0.01 in Gradient Inhibition. Therefore, our proposed method 
can significantly suppress the gradients with much lighter weight 
transformation. Moreover, as shown in Fig. 9, most of gradients are 
approaching to “0” along with the increased inhibition coefficient, 
indicating the possible elimination of adversarial perturbations, thus 
to prevent the adversarial attacks remarkably.

4) Mitigation Measures

Adversarial attacks are conducted by following the proposed at­
tack methodology, on both DNN and compressed HashNet models

Fig. 9: Absolute gradient amplitude of uncompressed DNN at various inhibition
coefficients
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(a) HashNet with model compression -  MNIST (b) DNNs -  CIFAR-10
Fig. 10: Success rate of adversarial attacks with Gradient Inhibition mitigate technique.

with the Gradient Inhibition method. Fig. 10 (a) and (b) show the 
success rates of adversarial attacks under Gradient Inhibition over 
HashNets (for MNIST) and four DNNs (for CIFAR-10), respectively. 
As Fig. 10a shows, the average success rate of adversarial attacks 
(HashNets, perturbations crafted through HFGSM with e =  0.5) 
can be reduced from 87.99% to 4.77% by increasing the inhibition 
coefficient r  from 0 to 0.1. Specifically, the uncompressed model 
presents the best efficiency (95.81% —> 1.24%) while all com­
pressed HashNets exhibit some resistance to Gradient Inhibition and 
eventually reduce the adversarial success rate to less then 10% at 
all selected compression rates. Fig. 10b evaluate the efficiency of 
proposed Gradient Inhibition on DNNs with CIFAR-10 database. The 
average success rate is dropped from 86.74% to 4.64% across various 
DNNs, demonstrating effective mitigations for adversarial attacks.

VI. C o n c l u s i o n

The emerging adversarial attacks leave the prevalent hardware 
accelerated Deep Neural Networks (DNNs) exposed to hackers. 
However, existing DNN security researches solely focus on the input 
perturbations but neglect the impacts of model-reshaping essential for 
DNN hardware deployment. In this work, the multi-factor adversarial 
attack problem is for the first time modeled and studied through 
extensive experimental and theoretical analysis. Based on the explo­
rations of model-reshaping and adversarial examples generating, a 
novel mitigation technique -  “Gradient Inhibition” is further proposed 
to effectively alleviate the severity of adversarial attacks for various 
DNNs. Our simulations demonstrate that “Gradient Inhibition” can 
significantly reduce the success rate of adversarial attacks while 
maintaining the desired inference accuracy without additional train­
ings. We hope that our results enable the community to examine the 
emerging security issues of hardware-oriented DNNs.
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