
10A-1

Security Analysis and Enhancement of Model Compressed
Deep Learning Systems under Adversarial Attacks

Qi Liu*, Tao Liu*, Zihao Liu*, Yanzhi Wang*, Yier Jin* and Wujie Wen*
* Florida International University, *Syracuse University, *University of Florida

*{qliu020, tliu023, zliu021, wwen}@fiu.edu, *ywang393@syr.edu, *yicr.jin@ccc.ufl.cdu

Abstract—Thanks to recent machine learning model innovation and
computing hardware advancement, the state-of-the-art of Deep Neural
Network (DNN) is presenting human-level performance for many complex
intelligent tasks in real-world applications. However, it also introduces
ever-increasing security concerns for those intelligent systems. For exam
ple, the emerging adversarial attacks indicate that even very small and
often imperceptible adversarial input perturbations can easily mislead
the cognitive function of deep learning systems (DLS). Existing DNN
adversarial studies are narrowly performed on the ideal software-level
DNN models with a focus on single uncertainty factor, i.e. input per
turbations, however, the impact of DNN model reshaping on adversarial
attacks, which is introduced by various hardware-favorable techniques
such as hash-based weight compression during modern DNN hardware
implementation, has never been discussed. In this work, we for the first
time investigate the multi-factor adversarial attack problem in practical
model optimized deep learning systems by jointly considering the DNN
model-reshaping (e.g. HashNet based deep compression) and the input
perturbations. We first augment adversarial example generating method
dedicated to the compressed DNN models by incorporating the software-
based approaches and mathematical modeled DNN reshaping. We then
conduct a comprehensive robustness and vulnerability analysis of deep
compressed DNN models under derived adversarial attacks. A defense
technique named “gradient inhibition” is further developed to ease the
generating of adversarial examples thus to effectively mitigate adversarial
attacks towards both software and hardware-oriented DNNs. Simulation
results show that “gradient inhibition” can decrease the average success
rate of adversarial attacks from 87.99% to 4.77% (from 86.74% to 4.64%)
on MNIST (CIFAR-10) benchmark with marginal accuracy degradation
across various DNNs.

I. In t r o d u c t io n

As one of the most fascinating techniques when we are entering
the era of Artificial Intelligent (AI), Deep Neural Networks (DNNs)
are penetrating the real world in many exciting applications such
as image processing, face recognition, self-driving cars, robotics and
machine translations etc. Nonetheless, all this success, to great extent,
is enabled by introducing the powerful data analysis capability of
state-of-the-art large-scale DNNs with deep and complex structures
and huge volume of model parameters, significantly exacerbating
the demand for computing resource and data storage of hardware
platforms. As an example, the large-scale image classification im
plementation of famous deep convolutional neural network (CNN)
“AlextNet” involves 61 million parameters off-chip memory accesses
and 1.5 billion high precision floating-point operations [1],

Fortunately, recent hardware engine innovation enables the im
plementations of those once “conceptual” DNN software systems
in both high-performance computing and resource-limited embedded
platforms for performing various intelligent tasks [2], [3], [4]. Many
hardware-favorable DNN architectures along with various DNN
model optimization techniques are developed to accelerate dedi
cated computations on general-purpose platforms like GPU [5] and
CPU [6], domain-specific hardware like FPGA [7], and customized
ASIC, e.g. recent Google Tensor Processing Unit (TPU) [8], [9], [10],

While DNN’s broad and positive impacts along with its impressive
hardware advancement excite multiple industries in myriad ways,
it also brings about ever-increasing security challenges. Since the
classification results of DNN systems are usually derived from the
probabilities [11], [12], the attackers cam easily compromise system
security by exploiting specific vulnerabilities of learning algorithms

This work is supported by the 2016-2017 Collaborative Seed Award
Program of Florida Center for Cybersecurity (FC2).

or classifiers through a careful manipulation of the input data samples,
namely adversarial examples, i.e. circumvent anomaly detection,
misclassify the adversarial images at testing time [13] or adversarially
manipulate the perceptual systems of autonomous vehicles to the
misreading of road signs, thus causing potential disastrous conse
quences [14]. Hence, safeguarding the security of DNN systems has
become an urgent task.

Many DNN adversarial researches have been conducted, including
adversarial example generating [13], [15], robustness analysis [16]
and mitigation techniques [13], [17], [18], However, existing adver
sarial studies focus only on software-level DNN models by (over-)
simply assuming that the input perturbations are the only uncertain
factor under unchanged software-level DNN models. The additional
DNN model change, e.g. non-linear weights reshaping to largely com
press DNN scale [19], [20], [21], [22], which is inevitable because of
the hardware resource constraints during DNN deployment, is often
neglected. As we shall present in section HI, the adversarial attack to
practical DNN systems will be a multi-factor problem rather than the
ideal single-factor problem from crafted adversarial inputs. Since the
realistic tasks often need to be executed in DNN hardware systems
with extra efforts on model compression, discovering the nature of
more realistic adversarial attacks, as well as developing effective
countermeasures to protect such practical learning systems will be
of critical importance at the early stage of DNN applications.

In this work, we for the first time formulate the multi-factor
adversarial attacks tailored for the practical deep learning systems
by integrating the mathematical modeled DNN model reshaping
(take hash-based DNN weight compression as an example) and
the input perturbations. We then for the first attempt to sys
tematically analyze the interplays among the hash compression
ratio, the amplitude of input perturbations, adversarial attack
successful rate and accuracy through extensive experimental and
theoretical studies. Interestingly, we discover that the hash-based
deep compressed DNN models can be somewhat less vulnerable to
adversarial attacks because of the reshaped weight distribution when
compared to the uncompressed software-DNN models. Inspired by
this observation, a defense technique named “gradient inhibition” is
further proposed to suppress the generating of input perturbations
thus to effectively prevent the adversarial attacks for deep learning
systems. Experimental results show that “gradient inhibition” can
reduce the success rate of adversarial attacks from 87.99% to 4.77%
(from 86.74% to 4.64%) on average on MNIST [23] (CIFAR-10 [24])
benchmark while maintaining the same level of accuracy across
various DNNs.

II. P r e l im in a r y

A. Basics o f Deep Neural Networks

Deep Neural Network (DNN) introduces multiple layers with
complex structures to model a high-level abstraction of the data [25],
and exhibits high effectiveness in cognitive applications by leveraging
the deep cascaded layer structure [1], [26], [27], For example, a
typical modem DNN often consists of following types of layers: The
convolutional layer extracts sufficient feature maps from the last layer
by applying kernel-based convolutions, the pooling layer performs a
downsampling operation (max or average pooling) along the spatial
dimensions for a volume reduction, and the fully-connected layer

978-1-5090-0602-1/18/$31.00 ©2018 IEEE 721

10A-1

Input Hidden layer

Original weights

0-4 1.1 0.1 0.6

0 - 2 0.3 0.5 1 . 0

0.9 0.3 1.5 0-3

0.7 0 - 2 1.2 0.5

Virtual weights output
Virtual weights

¿5 1 .-2 . 0 ? 5 =
0-3 •Ò;3 r 2

1 - 2 ■9-5 0 3 .

0 : 5 % 3 1 2 ,
5 5

■078*•2 -T 1 5

0 .8 -1.5 2 - r

k
&

'l
/v

j

H fu n c tio n

Hash bucket ^ . s | 1.21 0̂ 3~|

H ash fu n c tio n

| °-8 | 2 -r 11 5 Hash bucket

Real weights Real weights

Fig. 1: Illustration of model reshaping in an example HashNet.

Original image (x)
Dog -- 65% confidence

sign(V,J(0, x,y))
The Perturbation

(fast gradient sign method)

x +s ■ sign(V , J($, x, y))
AE image(x+ u)

Bear -- 95% confidence

Fig. 2: Illustration of adversarial examples

further computes the class score based on the final weighted results
and the non-linear activation functions.

B. Model Reshaping

As modem DNNs become more powerful with an ever-increasing
model size, i.e. 60M to even 10B parameters to represent the weight
connections [28], [29], [22], reducing their storage and computational
costs becomes critical to meet the requirement of practical applica
tions in hardware-oriented DNNs with limited resources, i.e. ASIC
or FPGA. Therefore, removing the redundancy of DNN models has
become a “must-have” step in deep learning system design [22].

Many studies are preformed to reshape the DNN models to
wards affordable hardware implementations, including network prun
ing [21], [22], HashNet [19], [20], etc. Those solutions can effectively
compress the weights through some non-linear transformations. Take
the HashNet adopted in this work as an example, a hash function
is selected to randomly group connection weights into hash buckets.
All connections within the same hash bucket share a single parameter
value. Therefore, the needed memory to store the weights can be
significantly reduced. Figure 1 demonstrates the idea of an example
HashNet for achieving significant storage reduction with limited
accuracy loss. The original weights are converted to real weights by
a random hash procedure. The real weights together with the hash
index which are physically stored in the DNN hardware only cost
~ 20% memory space compared to that of original (virtual) weights.

C. Adversarial Examples

Adversarial examples are maliciously crafted inputs dedicated to
mislead the DNN classification by introducing small input perturba
tions. The generating of adversarial examples can be modeled as an
optimization problem:

argm in || S x || s.t. F (X + 5x) = Y* (1)

Here F represents the function of target DNN model, and is usu
ally determined by the detailed DNN configurations such as the
architecture and the weight. Y* is the distorted output which is
different from the correct output Y . X * = X + S x denotes the
adversarial example perturbed by Sx- Hence the question becomes
how to solve the optimization problem to find the minimized Sx-
The common approach to derive adversarial examples is to extract
adversarial perturbations S x from the gradient information, since the
gradient is a good measurement for the output response difference
with respect to variations introduced in each dimension of an input
vector. Hence, there are two gradient-based methods to generate
adversarial examples from software DNN models: Fast Gradient Sign
Method (FGSM) [13] and Jacobian-based Saliency Map Approach
(JSMA) [15]. The former adds a small perturbation in the direction
of the sign of the gradient of the loss function with respect to the input
of the DNN to all input dimensions, while the latter only distorts the
most significant input features based on the salience map extracted
from gradient of model function w.r.t. inputs-Jacobian matrix.

Figure 2 shows a conceptual view of FGSM based adversary on
a representative DNN model-“AlexNet” with perturbation parameter
e = 0.005. The image originally correctly classified as “Dog” by

the “AlexNet” (65% confidence) is now misclassified as “Bear” with
a much higher confidence (95%) due to the slightly polluted input.
However, such an adversarial example is so close to the original
image that the differences are indistinguishable to human eyes.

III. A t t a c k D e s ig n

To analyze the vulnerabilities of practical deep learning systems
under adversarial attacks, we first present the threat model, followed
by an attack methodology developed for conducting adversarial
attacks over the hash-based deep compressed DNN models.

A. Threat Model

In this work, we adopt a white-box adversarial attack model. We
assume that the attacker has full access to all target compressed
/non-compressed DNNs, training and testing dataset. The objective of
adversarial attack is to mislead the classification of an original class
to a different target, i.e. original ^ target. To conduct the attack, the
attacker first acquires the DNN model information such as weights,
cost function, hash compression, gradient with normal input etc.
Then the imperceptible perturbations are calculated through derived
adversarial crafting algorithms and injected into normal inputs to
generate adversarial examples. Finally, the adversarial examples will
be sent to compressed/non-compressed DNN models, fooling the
deep learning systems with adversarial classification results.

B. Adversarial Attack Design

To exert effective adversarial attacks to practical deep learning
systems, our first step is to extend the single-factor adversarial
examples generating algorithm to the multi-factor version based
on the augmentation of software-model oriented FGSM and JSMA
approaches by taking mathematical characterized hash-based deep
compression into consideration. Then a synthesized attack method
ology is presented as our basis for security analysis and robustness
evaluation.

1) Multi-factor Adversarial Example Generating

To better illustrate how the adversary generating will be altered by
the input perturbation and model reshaping in deep learning systems,
the adversarial attack is again modeled as an optimization problem:

argm in || S x H || s.t. FH {X + SxH) = Y* (2)
s* h

where Fh represents the hardware-oriented hashed DNN model
derived from its software version (or uncompressed DNN model) F
with marginal accuracy reduction. Y* is the distorted output which
is different from the correct output Y. Apparently, the minimum
input perturbations of Fh (Sx h) will be less likely to be equal
to that of ideal software DNN model, i.e. F (Sx), even for the
same adversarial target Y*\ m in S x H / m in S x because of the
model reshaping (Fh F). If we define W and W h = <p (W)
as the weight matrix of DNN model F and Fh , the activation output
will be W (X + S x) and ip (W) (X + S x H), respectively, where
p (W) denotes a hardware-oriented weight transformation-hashing in
HashNet. Since the hardware-oriented model reshaping should always
minimize the accuracy loss, the corresponding results after activation

722

10A-1

/ should be f (W X) « f (ip (W) X) . However, the DNN output
perturbations will be changed from f (W 5x) to f (<p (W) S x „)
accordingly. Even for the same adversarial example (SxH = 6x),
the responses from the two models will be quite different. Different
from the single uncertainty factor assumption, i.e. input perturbations,
adopted in the software DNN models, the compressed version of
adversarial attacks will be more complicated and become a multi
factor problem due to the additional weight transformations.

As the foundation for hardware-oriented adversarial example gen
erating, we first mathematically model the deep compressed DNN
model-HashNet. In HashNet, the derived classification output a*+1
for neuron i in layer l + 1 and the gradient (£j) of loss function C
over activation j in layer l can be presented as:

,1+1

where h* l (i , j) is the hash function associated with the weights
in layer l and £l{i , j) : N —> ± 1 is the second hash function
independent of h for sign function to remove the bias of hashed inner-
products caused by collisions [30], / ' (■) represents the first derivative
of activation function / (■), and z lj is the result before activation
function. The weight transformation function will be modeled as
tp (W) = Wh O £ by introducing the two hash functions h and £.
Here Q denotes the elementary multiplication and the compression
rate can be set by tuning £. Accordingly, augmented from the FGSM,
we can derive the Hardware-oriented Fast Gradient Sign Method
(HFGSM) dedicated to HashNet as:

X AE = X + esign(V x J (X)) (5)

where, the gradient can be calculated as:

J v * J (X) = s i r .{ ‘- ‘ (i , ; « - ’

\ i S = (E 1 T « 4 .,, , , , ? < «) « ■ «) / (4) m

where e is the amplitude coefficient of perturbations, V x J (X) is
the gradient of loss function J w.r.t. input X .

Similarly, the Hardware-oriented Jacobian-based Saliency Map
Approach (HJSMA) for HashNet can be further developed with the
same weight transformation but forward derivative gradient that can
be obtained from the result of output layer. Thus an “adversarial
saliency map” that indicates the correlation between inputs and
outputs can be calculated from the gradient V XiF(x):

q (x = J 0 if V x tFt {X) < 0 or £ o / t V XiFa(X) > 0
1 { V x tFt (X) \ j : ô V x t F0(X)\ otherwise

(7)
where each element of saliency map S (X , f)[i] for a false target

class t is obtained based on the rule of rejecting input components
with negative target derivative or an overall positive derivative on
other classes o, otherwise accepting input components based on
synthetic results of positive target derivative and all the other forward
derivative components together. Therefore, only the input features
corresponding to large values of S(X, t)[i] in saliency map can
be identified for adding adversarial perturbations, thus to efficiently
mislead the classification result to a certain target.

2) Attack Methodology

To facilitate comprehensive adversarial attacks for the deep com
pressed DNN model, we develop a synthesized attack methodology
by integrating the derived HFGSM and HJSMA approaches. As

Algorithm 1: Adversarial Attack Methodology
// O is the inference on target DNN model
// 1Z is the random selected inputs for a round of attack
// e is the amplitude coefficient of perturbation in HFGSM
// i is the number of perturbation elements in HJSMA

1 foreach x e TZ do
// get the original input X and inference result Y

2 D{X ,Y) <- {{S,0{x))Uetl}
II calculate the gradient s.t. input X

3 V x J 4— Equation 6
// generating perturbation

4 SXh +- HFGSM(Vx J) or HJSMA(VX J)
s X* = X + SX[I

6
7

»

10
11

// perform inference using adversary as input
Y* -f- 0(X*)
i l Y = Y* then

// the adversarial attack is not success
if e or i < predefined upper-bound then

increase e in HFGSM (Equation 6) or
increase i in HJSMA (Equation 7)
GOTO: line 4

12 else
13 |_ adversarial success counter += 1

Algorithm 1 shows, an upper-bound of the perturbation amplitude
coefficient e in HFGSM (see Eq. 6) or the number of perturbation
elements i in HJSMA (see Eq. 7) will be predefined to guarantee
that the crafted adversarial perturbations can be maintained at an
imperceptible level, which is more desirable in practical attacks. A
randomly selected original input-output pair (X, Y) will be recorded
and compared with the adversarial input-output pair (X*, Y*). The
adversarial example generating process will be terminated once a
successful adversarial attack happens, i.e. Y -f Y*, otherwise e or
i will be increased until reaching the respective upper-bound. The
success rate of adversarial attacks will be adopted as a measurement
in our following security analysis.

IV . S e c u r i t y A n a l y s is

We conduct the multi-factor adversarial attacks on the fol
lowing tailored DNN model (i.e. 784-C64-C128-F512-10) applied
with HashNet model reshaping by following the proposed attack
methodology. A full MNIST database is adopted as our benchmark
for a comprehensive analysis of attacking effectiveness in deep
compressed/non-compressed deep learning systems.

A. Effectiveness o f Multi-factor Adversarial Attacks

We first designed several hash compressed DNN models-HashNets
with different compression rates (from | to based on the afore
mentioned uncompressed DNN model. To make a fair adversarial
attack analysis, our HashNets minimize the testing accuracy degra
dation (with normal input data without adversarial perturbations)
introduced by weight compression. As shown in Fig. 3, the testing
accuracy on HashNets is only slightly decreased as the compression
rate increases (i.e. 99.25% at rate | v.s. 99.13% at but still very
close to the uncompressed model (99.29%).

Accuracy(K)

99.29

99.13

99.05 99.1 99.15 99.2 99.25 99.3 99.35

Uncompressed HashNet(l/8) ■ HashNet(l/16} ■ HashNet{l/32) HashNet(l/64)

Fig. 3: Testing accuracy without adversarial perturbations.

723

10A-1

__100

0.1 0.15 0.2 0.3 0.5

P e rtu rb a tio n A m p litu d e C o e ffic ie n t (e)

Uncompressed m odel I HashNet(1/8) HashNet(1/16) ■ HashNet(1/32) ■ H ashNet(1/64)

Fig. 4: Success rate of multi-factor adversarial attacks with HFGSM approach.

£ 100

Uncompressed model ■ HashedNet(1/8) HashedNet(1/16) HashedNet(1/32) * HashedNet(1/64)

Fig. 5: Success rate of multi-factor adversarial attacks with HJSMA approach.

Fig. 4 shows the success rate of multi-factor adversarial attacks
implemented with HFGSM method at various compression rates (i.e.
HashNet(|) —y H ashN et(^) over different perturbation amplitude
coefficients. For comparison purpose, the results of the uncompressed
DNN model-the common basis of different HashNets, under the
original single-factor based FGSM attacks are also presented. As
expected, the attack success rates of both uncompressed DNN model
and various compressed models are increased monotonically along
with the growing perturbation amplitude coefficient, i.e. e = 0.1 —>
0.5. This is because the attacking capability of crafted adversarial
examples can be significantly enhanced by larger input perturbations
(see e = 0.5) for all DNN models regardless of the model reshaping.
However, for each individual e, the attack success rates of any
HashNet models are always lower than that of uncompressed model.
Moreover, the higher the compression rate is, the lower the attack
success rate will be at each e. We also conduct the same set of
experiments under HJSMA based adversarial attacks. Again, our re
sults in Fig. 5 demonstrate the similar trend at different combinations
of compression rate and the number of perturbation elements, i.e.
the attack success rates are decreased when increasing compression
rate on HashNet at each selected number of perturbation elements.
Surprisingly, these results indicate that the hash compressed DNN
model, which have significantly reduced number o f model parameters
fo r affordable hardware implementation (see Fig. 1), exhibits better
resistance to adversarial attacks than that o f its uncompressed or less
compressed version. This is in contrast to the empirical intuition that
the more compressed DNN models should be more susceptible to the
input perturbations.

Since the compressed DNN models maintain the similar level of
the stability (or testing accuracy in Fig. 3) as that of uncompressed
model, a reasonable explanation for the attack success rate reduction
is that the destructiveness of crafted adversaries may be alleviated
in HashNets when compare with those generated in uncompressed
DNN model. That is being said, the effectiveness o f multi-factor
adversary attacks depends on the perturbation amplitude coefficient e
in HFGSM (or the number o f perturbation elements i in HJSMA) and
the compression rate, as we shall discuss in the following section.

B. Theoretical Analysis o f Adversarial Attacks on Hashed DNNs

To validate our hypothesis and deeply understand the relationship
between adversary and model reshaping, we characterize the two
critical components for adversary example generating in compressed
models: weight and gradient amplitude under various compression
rates. Fig. 6 compares the distributions of weights for uncompressed
and two compressed DNNs-HashNet (^) and HashNet (^) . As
Fig. 6 shows, the model with a higher compression rate yields a
larger range of weights (i.e. ~ 2x and ~ 4x in HashNet (y^)
and HashNet (g^) w.r.t. uncompressed model). Given significantly
decreased number of unique weights (or increased compression rate)
introduced by hash-based weight sharing mechanism, the weight
distribution in compressed DNN model shall be much broader since

such model has to re-balance the activations through enlarged weights
during training to achieve an accuracy close to that of uncompressed
model. However, such weight transformation can directly impact the
gradient, thus the strength of generated adversaries.

Without loss of generality, we use the output layer with softmax
activation to roughly explain the underlying principle. The final
activation of output layer can be calculated through the following
Softmax function:

n *) EL (8)

where the input Zj of Softmax function can be expressed as:
n

Zj = (9)
¿=i

Note that we omit the bias because it can be included in weight by
adding an additional connection with weight as the bias and a constant
input 1. Since the Softmax function increases monotonically as the
input Zj grows, the enlarged weights in highly compressed models
can possibly augment the desired activations but suppress the
others, thus a possible stronger confidence for the final decision.

If we use FGSM based adversarial example generating algorithm
as an example, the cross-entropy loss function and its gradient w.r.t.
input can be obtained as:

J (x i , t j) = - ^ 2 t j logF(z j) (10)
3=1

V x i J { x i , t j) — 'y ' w j j (F(z j) t j) (11)
J=1

where Xi is the i th input and t j is the target for j th class. Consider
the F(z j) is an exponential function of Wji, the absolute gradient
amplitude will be dominated by term (F (z j) - t j) . With the enlarged
weights in compressed models, the activation F(z j) may be
closer to t j , thus a possible reduced gradient and perturbation
amplitude, meaning alleviated adversarial severity. Fig. 7 shows
the distributions of absolute value of mean gradient over uncom
pressed and compression DNNs with different compression rates. The

Fig. 6: The weight distributions for uncompressed DNN and two HashNets.

724

10A-1

I

I
I

Uncompressed model HashedNet(1/8) HashedNet(1/16) HashedNet(1/32) HashedNet(1/64)

■ 0 (0,1 E-2S] (1E-25.1E-20] (1E-20,1E-1S] (1E-15.1E-10] (1E-10.1E-S] B(1E-5,1]

Fig. 7: Absolute gradient amplitude with different compression rate.

DNN1 D N N2 D N N3 VG G -16

NoGradient Ihibition 0.1 0.2 ■ 0.3 «0 .4 0.5

Fig. 8: Inference accuracy of CIFAR-10 with Gradient Inhibition

proportion of large gradients (10-10 ~ 1) is reduced from ~ 68%
(uncompressed model) to ~ 19% (HashNet(±)) as compression rate
grows, while that of small gradients (10_2S ~ 10-15) is increased
from ~ 1% to ~ 32%, which is in excellent agreement with our
theoretical analysis and validates the degraded attack capability of
compressed DNNs compared with the uncompressed version.

V. M it ig a t io n A p p r o a c h

In our security analysis, we show that the magnitude of weights
in DNNs becomes a new factor that can significantly impact the
the severity of adversarial attacks. Hash-based weight compression
enlarges the magnitude of weights, thus to prevent the generating
of stronger adversarial examples. However, its effectiveness is very
limited, e.g. < 30% success rate reduction at any perturbation ampli
tude coefficient in Fig. 4, because the weight enlargement, introduced
by non-linear weight transformation, can only be guaranteed at a
certain probability (see Fig.6). Inspired by this observation, a novel
mitigation technique named Gradient Inhibition is further proposed
to effectively mitigate the adversarial attacks.

A. Gradient Inhibition method

Our proposed Gradient Inhibition intends to control the weights
linearly with enlarged magnitude guarantee for each weight:

w = w + t * sign(w) (12)

where r is the inhibition coefficient. Different levels of weight
enlargement can be achieved by a fine-grained control parameter r
for both positive and negative weights, thus to minimize the gradient
needed for adversarial perturbations generating and effectively miti
gate or even eliminate the threats of adversarial attacks for DNNs.

Another advantage of Gradient Inhibition method is its low im
plementation cost applicable to both software or hardware-oriented
compressed DNN models. Gradient Inhibition can be applied at any
layer after the training process. Our practice is to deploy this method
at the layers close to the output layer (i.e. the last fully connected
layer) for higher attack rate reduction but lowest accuracy loss due
to the usually moderate number of weights and strongest impacts on
decision making.

B. Evaluation o f Gradient Inhibition

1) Experiment Setup

Various HashNets and MNIST benchmark [23], which are used
in section IV, are adopted in our experiment to evaluate efficiency
of Gradient Inhibition. Additionally, the CIFAR-10 database [24]
is selected as a new benchmark in our evaluation, including 60K
32x32 color images in 10 classes, 50K for training and 10K for
testing. As shown in Table. I, four representative DNN models with

Candidate Models DNN1 DNN2 DNN3 VGG-16
Relu Convolutional 4 layers 6 layers 9 layers 13 layers
Relu Fully Connected 2 layers 2 layers 2 layers 3 layers
Max Pooling 2 layers 3 layers 3 layers 5 layers

TABLE I: Architectures of selected neural network candidates.

different architectures, including state-of-art VGG-16 [26], are chosen
to verify the feasibility and scalability of Gradient Inhibition across
various types of DNN models. We assume the adversarial examples
are generated through the FGSM and HFGSM for uncompressed and
compressed models, respectively.

2) Inference Accuracy

An effective mitigate technique against adversarial attacks should
not impact the functionality of the DNN models integrated with mit
igate techniques. Before we evaluate the effectiveness, we first verify
the inference accuracy changes introduced by Gradient Inhibition. As
shown in 8, the inference accuracy on CIFAR-10 database for each
DNN model implemented with Gradient Inhibition is always at the
same level as that of its corresponding model without such technique
at different inhibition coefficients. We also find the similar accuracy
trend in Hash compressed DNNs with different compression rates
for the MNIST dataset. Note that the adopted inhibition coefficient
t = 0.1 —> 0.5 can introduce flexible weight adjustments, i.e.
±0.1 —> ±0.5, with very minor accuracy change.

3) Gradient Inhibition Efficiency

Fig. 9 shows the statistics of suppressed gradients across various
inhibition coefficients for an uncompressed DNN model testing
the MNIST dataset. As shown in Fig. 9, even with a very small
adjustment on original weights, i.e. inhibition coefficient r = 0.01,
the gradient amplitude can be much lower than the one generated on
H ashN et(^) in Fig. 7, which is the best case in compressed DNN
models. Note that in H ashN et(^), the range of weights has been
enlarged from ±0.1 to ±0.4 (see Fig. 6), which is far exceed that
of ±0.01 in Gradient Inhibition. Therefore, our proposed method
can significantly suppress the gradients with much lighter weight
transformation. Moreover, as shown in Fig. 9, most of gradients are
approaching to “0” along with the increased inhibition coefficient,
indicating the possible elimination of adversarial perturbations, thus
to prevent the adversarial attacks remarkably.

4) Mitigation Measures

Adversarial attacks are conducted by following the proposed at
tack methodology, on both DNN and compressed HashNet models

Fig. 9: Absolute gradient amplitude of uncompressed DNN at various inhibition
coefficients

725

10A-1

Inhibition Coefficient Inhibition Coefficient

(a) HashNet with model compression - MNIST (b) DNNs - CIFAR-10
Fig. 10: Success rate of adversarial attacks with Gradient Inhibition mitigate technique.

with the Gradient Inhibition method. Fig. 10 (a) and (b) show the
success rates of adversarial attacks under Gradient Inhibition over
HashNets (for MNIST) and four DNNs (for CIFAR-10), respectively.
As Fig. 10a shows, the average success rate of adversarial attacks
(HashNets, perturbations crafted through HFGSM with e = 0.5)
can be reduced from 87.99% to 4.77% by increasing the inhibition
coefficient r from 0 to 0.1. Specifically, the uncompressed model
presents the best efficiency (95.81% —> 1.24%) while all com
pressed HashNets exhibit some resistance to Gradient Inhibition and
eventually reduce the adversarial success rate to less then 10% at
all selected compression rates. Fig. 10b evaluate the efficiency of
proposed Gradient Inhibition on DNNs with CIFAR-10 database. The
average success rate is dropped from 86.74% to 4.64% across various
DNNs, demonstrating effective mitigations for adversarial attacks.

VI. C o n c l u s i o n

The emerging adversarial attacks leave the prevalent hardware
accelerated Deep Neural Networks (DNNs) exposed to hackers.
However, existing DNN security researches solely focus on the input
perturbations but neglect the impacts of model-reshaping essential for
DNN hardware deployment. In this work, the multi-factor adversarial
attack problem is for the first time modeled and studied through
extensive experimental and theoretical analysis. Based on the explo
rations of model-reshaping and adversarial examples generating, a
novel mitigation technique - “Gradient Inhibition” is further proposed
to effectively alleviate the severity of adversarial attacks for various
DNNs. Our simulations demonstrate that “Gradient Inhibition” can
significantly reduce the success rate of adversarial attacks while
maintaining the desired inference accuracy without additional train
ings. We hope that our results enable the community to examine the
emerging security issues of hardware-oriented DNNs.

R e f e r e n c e s

[1] A. Krizhevsky et a l , “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information processing systems,
2012, pp. 1097-1105.

[2] https://cloudplatform.googleblog.com/2016/05/
Google-supercharges-machine-leaming-tasks-with-custom-chip.html.

[3] https://research.fb.com/category/facebook-ai-research-fair/.
[4] https://www.microsoft.com/en-us/research/research-area/

artificial-intelligence/.
[5] D.C. Ciresan et a l, “Flexible, high performance convolutional neural

networks for image classification,” in IJCAI Proceedings-Intemational
Joint Conference on Artificial Intelligence, vol. 22, no. 1. Barcelona,
Spain, 2011, p. 1237.

[6] V. Vanhoucke et a l , “Improving the speed of neural networks on
cpus,” in Proc. Deep Learning and Unsupervised Feature Learning NIPS
Workshop, vol. 1, 2011, p. 4.

[7] C. Farabet et a l , “Large-scale fpga-based convolutional networks,”
Scaling up Machine Learning: Parallel and Distributed Approaches, pp.
399-419, 2011.

[8] https://www.perspectiveapi.com/.
[9] N.P. Jouppi et al., “In-datacenter performance analysis o f a tensor

processing unit,” arXiv preprint arXiv:1704.04760, 2017.
[10] https://cloud.google.com/blog/big-data/2017/05/

an-in-depth-look-at-googles-first-tensor-processing-unit-tpu.
[11] Z. Ghahramani, “Probabilistic machine learning and artificial intelli

gence,” Nature, vol. 521, no. 7553, p. 452, 2015.
[12] M. Barreno et al., “The security o f machine learning,” Machine Learn

ing, vol. 81, no. 2, pp. 121-148, 2010.
[13] IJ . Goodfellow et al., “Explaining and harnessing adversarial examples,”

arXiv preprint arXiv:1412.6572, 2014.
[14] N. Papemot et al., “Practical black-box attacks against deep learning

systems using adversarial examples,” arXiv preprint arXiv:1602.02697,
2016.

[15] N. Papemot et al., “The limitations o f deep learning in adversarial
settings,” in Security and Privacy (EuroS&P), 2016 IEEE European
Symposium on. IEEE, 2016, pp. 372-387.

[16] A. Fawzi et al., “Analysis o f classifiers’ robustness to adversarial
perturbations,” arXiv preprint arXiv:1502.02590, 2015.

[17] S. Gu et al., “Towards deep neural network architectures robust to
adversarial examples,” arXiv preprint arXiv:1412.5068, 2014.

[18] N. Papemot et al., “Distillation as a defense to adversarial perturbations
against deep neural networks,” in Security and Privacy (SP), 2016 IEEE
Symposium on. IEEE, 2016, pp. 582-597.

[19] W. Chen et al., “Compressing neural networks with the hashing trick,” in
International Conference on Machine Learning, 2015, pp. 2285-2294.

[20] Z. Cao et al., “Hashnet: Deep learning to hash by continuation,” arXiv
preprint arXiv:1702.00758, 2017.

[21] S. Han et al., “Learning both weights and connections for efficient neural
network,” in Advances in Neural Information Processing Systems, 2015,
pp. 1135-1143.

[22] S. Han et a l , “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[23] Y. LeCun, “The mnist database o f handwritten digits,” http://yarm. lecun.
com/exdbTmnist/, 1998.

[24] A. Krizhevsky et al., “Learning multiple layers o f features from tiny
images,” 2009.

[25] G.E. Hinton et al., “Reducing the dimensionality o f data with neural
networks,” science, vol. 313, no. 5786, pp. 504—507, 2006.

[26] K. Simonyan et al., “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[27] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings o f
the IEEE conference on computer vision and pattern recognition, 2015,
pp. 1-9.

[28] Y. Cheng et al., “An exploration of parameter redundancy in deep
networks with circulant projections,” in Proceedings o f the IEEE In
ternational Conference on Computer Vision, 2015, pp. 2857-2865.

[29] S. Han et al., “Eie: efficient inference engine on compressed deep
neural network,” in Proceedings o f the 43rd International Symposium
on Computer Architecture. IEEE Press, 2016, pp. 243-254.

[30] K. Weinberger et al., “Feature hashing for large scale multitask learning,”
in Proceedings o f the 26th Annual International Conference on Machine
Learning. ACM, 2009, pp. 1113-1120.

726

