
Netlist Reverse Engineering for High-Level Functionality
Reconstruction

Travis Meade1, Shaojie Zhang1, and Yier Jin2

1Department of Computer Science, University of Central Florida
2Department of Electrical and Computer Engineering, University of Central Florida

travm12@knights.ucf.edu, shzhang@cs.ucf.edu, yier.jin@eecs.ucf.edu

Abstract— In a modern IC design flow, from speci-

fication development to chip fabrication, various secu-

rity threats are emergent. Of particular concern are

modifications made to third-party IP cores and com-

mercial off-the-shelf (COTS) chips where no golden

models are available for comparisons. Toward this di-

rection, we develop a tool, named Reverse Engineering

Finite State Machine (REFSM), that helps end-users

reconstruct a high-level description of the control logic

from a flattened netlist. We demonstrate that REFSM

effectively recovers circuit control logic from netlists

with varying degrees of complexity. Experimental re-

sults also showed that the developed tool can easily

identify malicious logic from a flattened (or even ob-

fuscated) netlist. If combined with chip level reverse

engineering techniques, the developed REFSM tool

can help detect the insertion of hardware Trojans in

fabricated circuits.

I. Introduction

Third-party resources in hardware circuit designs,
mostly in the format of third-party fabrication services
and third-party soft/hard IP cores for SoC development,
are prevailingly used in modern circuit designs and fabri-
cations. The availability of those resources largely allevi-
ates the design workload, lowers the fabrication cost, and
shortens the time-to-market (TTM). However, the heavy
reliance on third-party resources/services also breeds se-
curity concerns. For example, a third-party IP core may
contain malicious logic and/or design flaws which will be
exploited by attackers after the IP cores are integrated
into SoC platforms. In addition, a malicious foundry may
insert hardware Trojans into the fabricated chips. The
impact of malicious logic and design flaws in IP cores or
fabricated chips threatens to ruin the credibility of ven-
dors and places unnecessary security risks on the users.
To counter the threat of untrusted third-party re-

sources/services, both pre-silicon and post-silicon trust
evaluation approaches have been proposed. During the
pre-silicon stage, researchers mostly focus on verification
and validation methods on RT-level code. UCI [1] ana-
lyzes the RTL code to find lines of code that are never
used in order to identify suspicious circuitry; however,
hardware Trojans have been designed that successfully
defeated UCI [2]. Other approaches for pre-silicon trust

evaluation rely on formal methods, either to ensure the
consistency between RTL code and high level specifica-
tions [3], or to ensure that the delivered IP cores fulfill
pre-specified security properties [4, 5, 6, 7]. At the post-
silicon stage, the majority of the trust evaluation and
hardware Trojan detection methods rely on on-chip equiv-
alence checking [8] or side-channel fingerprinting [9, 10].
Large design overhead and high testing cost is associated
with these methods. While most of these methods try to
enhance the testing methods for security validation, there
is a lack of reverse engineering tools which can rebuild
the full functionality of the netlist for further analysis.
Upon this request, DARPA initiated the Integrity and
Reliability of Integrated CircuitS (IRIS) program. The
program emphasizes that the security challenges associ-
ated with third-party resources/services are coupled with
the inability to guarantee the generation of comprehen-
sive test vectors to test functions not in the specification
[11]. In response to this program, various solutions and
algorithms have been proposed trying to recover the data-
path as well as the functionality of each circuit module in
the data-path from a gate-level netlist, such as behavioral
pattern mining [12], word-level structure reconstruction
[13], and structural and functional analysis on individual
gates and sub-modules [14].

While these proposed methods help recover the data-
path and reconstruct the functionality of arbitrary gate-
level netlists, the control logic, a less-regulated circuit
component, is rarely discussed. The previously presented
data-path functionality recovering methods cannot be
used in control logic analysis for various reasons: 1) Sig-
nals are often in the format of multi-bit buses in a data-
path, whereas they often act individually in control logic;
2) The full functionality of a data-path may be rebuilt
through the analysis of separate gates and sub-modules.
However, we have to recover the entire control logic, often
in the form of finite state machines (FSMs), in order to
understand the control logic functionality; 3) Due to the
flexibility of FSM structures it is difficult to build a mod-
ule library with all possible control circuit components.
As a result, a control logic recovery method is required
which, if combined with data-path analysis methods can
help consumers to reconstruct the full functionality of the
third-party IP cores (or fabricated chips) where RTL de-

978-1-4673-9569-4/16/$31.00 ©2016 IEEE

7B-1

655

Find non-State Registers

Large Search
Space?

Netlist

Prune unimportant
Registers

Simplified FSM(s)

Evaluate (3-SAT)

Modify Recursion Depth

Split FSM(s)

No

Yes

Construct FSM

Fig. 1. REFSM Working Flow Diagram

scriptions are not available.
In this paper, an automated netlist analysis tool is de-

veloped to help users fully understand the circuit con-
trol logic without the need for consulting RTL descrip-
tions. The automation tool is named Reverse Engineer-
ing Finite State Machine (REFSM) to emphasize its usage
in rebuilding circuit control logic. As opposed to previ-
ous methods for FSM reverse engineering in [15, 16, 17],
REFSM builds a Boolean expression based on the gate-
level netlist related to the FSM registers and employs a
3-SAT solver to construct the FSM transition graph (3-
SAT solvers have been used for FSM equivalence checking
[18]). The main contributions of the paper include:

• The entire functionality of the control logic can be
rebuilt on a high level description for any netlist so
that any malicious behaviors can be identified easily;

• The use of heuristic algorithms helps solve the scal-
ability issue and lead to large-scale circuit analysis;

• The analysis outcome will be automatically con-
structed to further reduce the testing time.

The rest of the paper is organized as following: Section
II introduces the basic working flow and supporting al-
gorithms of REFSM. Case studies of REFSM on various
circuit designs are presented in Section III. Further ex-
perimentation results are elaborated in Section IV demon-
strating the effectiveness and efficiency of REFSM in au-
tomatically detecting stealthy hardware Trojans. Con-
cluding remarks are in Section V.

II. REFSM Working Flow

REFSM attempts to recover the control logic from a
gate-level netlist and present to the user a higher-level
description. A general outline of REFSM is shown in
Figure 1. The netlist is first collected either from chip
level reverse engineering or from the IP provider. The end
user is then required to initiate the process and modify
the recursion depth if run-time becomes an issue. Since
designs can contain hundreds of thousands of gates or
more, the first step is to reduce the number of gates to be
analyzed by identifying and isolating FSM registers.

Algorithm 1 Find an FSM graph given a set of expres-
sions EXPS from a flattened netlist and a starting expression set
resetState

1: function GetRegisterStates(EXPS, resetState)
2: Let FSM be an empty graph G(N,E)
3: Add the resetState to the Queue; Set N to {resetState}
4: while Queue �= ∅ do
5: Get a currentState from Queue
6: currentExp← EXPS.LastState(currentState)
7: F ← Fetch(currentExp)
8: for nextState ∈ F do
9: if nextState /∈ N then
10: Queue.add(nextState)
11: N ← N ∪ {nextState}
12: end if
13: E ← E ∪ {(currentState, nextState)}
14: end for
15: end while
16: return FSM
17: end function
18: function Fetch(exps)
19: if exps contains no variables then return {exps}
20: end if
21: x← first variable in exps
22: newExps← exps.set(x, false)
23: F ← Fetch(newExps)
24: newExps← exps.set(x, true)
25: F ← Fetch(newExps) ∪ F
26: return F
27: end function

A. Create Logic Graph and Identify State Registers

REFSM starts by creating the logical graph from a
flattened netlist. The graph contains edges from in-
puts/registers to registers/outputs. Since REFSM deter-
mines the potential states of the registers, the outputs
will not be considered. Any logic that is output exclu-
sive is removed from the graph. What remains is logic
from inputs and registers that can affect other registers
either directly (register at time t can vary from register
state/input at time t − 1) or indirectly (register at time
t may vary based on register state/input at time t − k,
where k > 1). REFSM then identifies potential state reg-
isters following the heuristic algorithms proposed in [17].

B. Prune Graph

Next, using the netlist and the set of state regis-
ters, REFSM prunes out potentially unimportant regis-
ters. The process involves a Breadth First Search (BFS)
through the netlist up to a maximum distance of δ from
the set of state registers1. This precomputation is used to
produce a smaller subset of the netlist, which allows for
an estimated register state graph in a reasonable amount
of time and memory usage. However, in case that the cur-
rent δ still causes program problems, δ will be decreased
by user to run the algorithm again. The δ reduction pro-
cess is performed until a state register graph is produced.
The justification for graph pruning is as follows. Some

data registers are required for determining which states

1Similar to the step of deciding which registers are state registers,
the register pruning is a heuristic approach.

7B-1

656

are visited. Even though they might not affect the state
registers immediately, they can cause significant changes
to state register values in the future. Conversely, some
of the registers might not be pertinent to what state the
circuit is in or can visit. As an example, a register only
affects outputs and, unless considered a state register, can
be removed since it does not affect state registers. The call
to remove registers is tough, so all registers are considered
important. Only if the amount of possible states becomes
too large, REFSM will prune some potentially less impor-
tant registers. Our implementation considers both ‘0’ and
‘1’ as potential values for each “unimportant” register. If
there are 10 registers that are not considered important
by the pruning step, then each state actually corresponds
to over 1000 states. Checking and storing each one of
these can take time, but certain assumptions about the
graph can also reduce the number of states that need to
be considered. The process of checking and pruning is
performed until the number of states is small enough that
the state graph can be fully constructed. Analysis can
then be performed on the resulting graph to recover con-
trol flow and/or to detect malicious logic.

C. Evaluate State Space

After generating a pruned graph, REFSM searches for
all possible states of registers that are achievable by us-
ing the functionGetRegisterStates (see Algorithm 1).
The given netlist is represented by a set of Boolean logi-
cal expressions, EXPS, and a set of false and true values
(‘0’ and ‘1’) to represent each state that the registers can
take on. The only registers that are listed in each state
are those which were determined to be important in the
prune step. The Queue is initialized with the reset state
(resetState). Meanwhile, the set of seen states (N) also
contains the reset state to prevent reusing it again. By
looping through all elements in the Queue all possible
register states are generated. A single iteration starts by
pulling out the first element in the Queue. A new set of
expressions is generated by filling in all the values cur-
rently in the register state. As an example, if the register
is set to be true (value ‘1’) in the current state, then when
making the new expressions from the netlist all variables
relying on the register’s output will be recalculated ac-
cordingly. This new expression is sent into the 3-SAT
function, Fetch, for evaluation and returns the set of all
achievable register states using the given expression. The
GetRegisterStates function constructs an FSM graph
by searching for any states not included in the graph, and
then evaluating which states they can reach. Each new
state is added both into the Queue and into N . The
overall run-time is O(|N |2 + |N | × 2(#inputs)).

As a key part of the function GetRegisterStates,
the Fetch function starts by checking the expression for
unassigned variables. If there is a variable that has yet to
be assigned and the variable can affect the outcome of the
expression, the Fetch function will need to decide what

value to use. Otherwise, it will return the expression as it
is. If there were unassigned variables, the Fetch function
will randomly pick one of them, set its value to ‘0’, check
the outcome recursively and add it into the resulting ex-
pressions. The Fetch function will then set the variable
to ‘1’, check the outcome, and add the resulting expres-
sion into the output. After going through all variables,
the function will then return all identified states.
The complexity of the Fetch function operation is

O(2n) in the worst case, where n is the number of vari-
ables that can change. In practice, due to the structure
that many netlists follow, there are few variables that
have an effect on the outcome of the next state. Most
of the states terminate at a depth of 8 or less in our ex-
perimentation (See Section III). This makes the number
of visited states less than 256. Further, many of the in-
puts perform a similar function so if one is set to ‘1’, the
others no longer need to be checked. For example given
20 variables ANDed or ORed together, the number of de-
cisions that need to be made becomes 21. Although the
computational complexity of the Fetch function appears
daunting, it normally can be run in a reasonable amount
of time such that the total run-time for REFSM becomes
very low (See Table I).

D. Post-Processing on Reconstructed FSM

After deriving the global FSM, some extra steps for
further analysis of the recovered control logic may be re-
quired. Determining simple transition conditions is one
task that REFSM performs. This enables users to find
suspicious transitions. A more important task is separat-
ing local FSMs from the global FSM, which is referred as
FSM decomposition and is described below.
For demonstration purpose, we consider the case that

two independent FSMs were merged. This results a pair
of states (αi, βj) of the merged FSM, where αi is from
the first FSM and βj is from the second FSM. Each pair
of transitions that originate from the individual states
should be traversable. The edges leaving the state (αi, βj)
will contain at least the Cartesian product of the reach-
able states from state αi and βj . More formally

{(αi′ , βj′) | αi′ ∈ E1 [αi] ∧ βj′ ∈ E2 [βj]} ⊆ E(1×2) [(αi, βj)] (1)

where EF [α] is the state set that can be reached from
state α in an FSM F . This infers that the merged FSM
will be the tensor product of the original FSMs.
It should be noted that there have been algorithms

which can decompose the tensor products on undirected,
unlabeled, connected graphs into unique prime factor de-
compositions (UPFD) in polynomial time [19]. However,
to decompose a merged FSM involves directed graphs and
appears to be a harder problem. Therefore a heuristic-
based approach is used to take advantage of the register
labeling to split the graph into UPFD. The bottom part
of Figure 1 presents an overview of the decomposition
heuristic used in REFSM. The basic idea is to assume that
each pair of registers is originally independent. Then look

7B-1

657

TABLE I
Average Run-time for Sample Circuits

Testing Circuits Registers Total Gates Time
RS232 Transceiver 59 168 1 s

32-bit RSA 555 2139 < 1 s
MC8051 μP 578 6590 39 s
SPARC μP 119911 232978 600 s

for contradicting sets of independent registers (either by
vertex label or transition topology) and merge the found
sets together until all register sets can properly construct
the original FSM using their tensor product. Algorithm
2 lists the detailed description of the used algorithm.

Algorithm 2 Returns a partition of an FSM given a set of reg-
isters, R, and an FSM graph G(N,E)

1: function SplitFSM(R, G(N,E))
2: Let P = {Pi|Pi is the Partition containing register i}
3: Assume no register depends on a register other than itself.
4: for i, j ∈ R such that Pi �= Pj do
5: Let Gi(Ni, Ei) be the FSM dependent on i
6: Let Gj(Nj , Ej) be the FSM dependent on j
7: Let G′(N ′, E′) be the FSM dependent on i and j
8: if there exists u ∈ Ni and v ∈ Nj and (u, v) /∈ N ′ then
9: Pi ← Pi ∪ Pj ; Pj ← Pi

10: else
11: if there exists e ∈ Ei and l ∈ Ej and (e, l) /∈ E′ then
12: Pi ← Pi ∪ Pj ; Pj ← Pi

13: end if
14: end if
15: end forreturn P

16: end function

III. Experimental Results

In order to verify the effectiveness and the scalability
of the developed REFSM tool, we applied the tool on
various circuit designs ranging from small-scale ASIC de-
signs to medium- and large-scale microprocessors. As we
will demonstrate shortly, the control logic within all these
testing circuits are recovered successfully in the format
of finite state machines. The experimental tests are run
on a desktop with Intel i7 quad-core and 16GB memory.
The average run-time for different circuits are listed in
Table I. For small-scale and medium-scale circuits, our
algorithm can reconstruct the circuit control logic from a
flattened netlist in less than 1 minute (most the time less
than 1 second). The run-time is below 10 minutes even
for large-scale circuits. From Table I, we can also find
that in general the REFSM would have a larger compu-
tation time for larger circuits. However, the complexity
of the control logic will affect the computation time. For
example, 32-bit RSA Encryption[20] circuit finishes faster
than the smaller RS232 transceiver due to the RSA cir-
cuit’s more regular circuit structure.

A. RS232 Transceiver

The RS232 transceiver includes two sub-modules for
data transmitting and data receiving. The sub-modules

Fig. 2. Recovered Control Logic of the Entire RS232 Netlist

including the transmitter and the receiver work indepen-
dently without interfering with each other. In addition,
they have their own input/output pins at the top mod-
ule. However, the flattened netlist does not maintain the
circuit hierarchical structure and there is no clear bound-
ary between them. Therefore, the selection of an RS232
circuit is ideal for verifying the capability of REFSM in
isolating different FSMs from a flattened netlist.
Using the flattened RS232 netlist as the input, our

REFSM tools recover the control logic in the format of
FSM of the entire circuit. Figure 2 shows the recovered
global FSM which contains 25 unique states with quite
complicated transmission conditions among these states.
This FSM, although containing the entire functionality
of the RS232 circuit control logic, is almost meaningless
to users and testers due to its complexity. However, the
FSM decomposition component of REFSM can help sim-
plify the FSM structure.
Using the recovered FSM in Figure 2, the developed

FSM decomposition tool can isolate independent states
from the entire FSM. In this case, two independent FSMs,
Figure 3a and Figure 3b, are separated from the control
logic in Figure 2. To validate the correctness of the FSM
decomposition results, we build the real FSMs of the re-
ceiver and transmitter submodules in the RS232 circuit
which are identical to the recovered FSMs both in avail-
able states and in all state transition conditions.

B. 8051 Microprocessor

The reason we used the 8051 microprocessor is to show
the potential of REFSM in dealing with a highly-complex
circuit structure. The source code of the 8051 micropro-
cessor is written in VHDL, where each instruction will
take up to three clock cycles to complete [21]. Based on

7B-1

658

(a) (b)

Fig. 3. The two FSMs recovered from the RS232 netlist. (a) First
decomposed FSM and (b) second decomposed FSM.

the RTL code, we first constructed the real FSM when
dealing with different instructions (see Figure 4a). We
then synthesize the circuit and generate the flattened
netlist of the 8051 microprocessor. The flattened netlist
is then used as the input of the REFSM, which then re-
covers the control logic from the netlist. The recovered
netlist is shown in Figure 4b. A comparison between Fig-
ure 4a and Figure 4b shows us that these two FSMs are
of the same structure. In fact, the transition conditions
are also identical.

IV. REFSM in Hardware Trojan Detection

The capability of REFSM for control logic recovery can
also help detect hardware Trojans which are triggered
by a specific input sequence, so-called sequential Trojans.
Compared to the hardware Trojans that rely on only com-
binational logic to be triggered, sequential Trojans are
much more difficult to activate and can evade many hard-
ware Trojan detection methods [22]. However, since the
behavior of the sequential Trojan triggering mechanism
can be modeled as an FSM with the specific input se-
quence serving as the transition conditions, REFSM can
help rebuild and isolate the Trojan FSM. From this circuit
users/testers can easily identify the Trojan logic as well as
the Trojan triggering conditions. For demonstration pur-
poses, a Trojan-infected cryptographic platform is used
[23, 24]. The platform is an FPGA implementation de-
signed to perform all necessary operations for cyphertext
transmissions through public channels. The user inputs
data via a keyboard attached to a PS2 interface. This text
is displayed through a VGA port onto an attached mon-
itor. The user then initiates the encryption of the data
entered via a button on the FPGA board. The encryp-
tion used is an 128-bit AES encryption core; the user also
has the ability to select up to 16 different encryption keys
by changing a combination of four switches on the FPGA
before initiating the encryption sequence. Once encryp-
tion is finished, the user can then send the encrypted data
through an on-board serial port.
In this design a Trojan was inserted in the top level

module that uses a finite state machine to read a specific
input sequence from the user, via the keyboard. Once
the sequence is entered, the activated hardware Trojan

EXEC2 EXEC3FETCHSTARTUP EXEC1

(a) The RTL FSM.

011 100001000 010

(b) The REFSM FSM.

Fig. 4. The FSM Recovered from MC8051 Netlist and RTL.

Fig. 5. The Recovered Hardware Trojan Trigger

will leak the AES encryption key through the serial port.
The Trojan trigger seems simple but it can evade many
hardware Trojan detection methods [24].
However, if we can identify all states of the Trojan

FSM, determining the the actual behavior of the Tro-
jan becomes apparent. Using the state space exploration
techniques presented, all FSM states and transitions were
correctly identified by the REFSM, as well as the correct
conditions of the inputs for each transition. State dia-
grams were constructed of the edge-lists for the recovered
FSMs. Figure 5 shows the recovered FSM of the inserted
hardware Trojan and its triggering conditions. The letter
on each transition curve shows the keyboard input which
will enable the transition among these states. While the
REFSM tool will not tell us whether the recovered FSM
is genuine or malicious, users/testers can easily identify
the suspicious logic and conclude that the special input
sequence, ‘New Haven’ in this case, is outside the design
specification and therefore potentially a hardware Trojan
trigger. Users may validate their findings by triggering
the suspicious circuit by inputting the special sequence.
Besides the elaborated example, we also applied our so-

lutions to the hardware Trojan benchmarks from Trust-
Hub [20]. Table II shows some of the testing results from
which we can find that the REFSM tool can help detect
hardware Trojans with sequential trigger and/or sequen-
tial payload in seconds.

V. Conclusion

This paper proposed and evaluated a method for reverse
engineering the control logic from a gate-level netlist. The
algorithm designed and implemented showed promising
results with reasonable run time on standard desktop
computer hardware. For every test, all states were suc-
cessfully identified along with their correct state transi-
tions and conditions leading to near perfect FSM recon-

7B-1

659

TABLE II
Run-Time and Trojan Detection Capability on Trust-Hub Benchmark

Benchmark Trigger Payload Trojan Detected? Run-time
AES-T100 Always On CDMA Trojan Side Channel Detected 18 s
AES-T400 Plaintext = RF Trojan Side Channel Detected < 1 s

128’hffffffffffffffffffffffffffffffff
AES-T800 Plaintext = CDMA Trojan Side Channel Detected < 1 s

1) 128’h3243f6a8885a308d313198a2e0370734
2) 128’h00112233445566778899aabbccddeeff

3) 128’h0
4) 128’h1

b15-T400 Address = 8’hFF Denial of Service Detected < 1 s
s38584-T100 Scan Enable Mode Design Malfunction Detected < 1 s
MC8051-T200 pcon (control mem) = 1’b1 Reduced Design Reliability Detected 90 s

struction. In addition, the developed tool helps identify
sequential hardware Trojans which, otherwise, would be
very difficult to detect through existing testing methods.
We expect that the developed tool will be widely imple-
mented in other hardware security areas. Nevertheless,
one shortcoming of the developed tool stems from the
fact that all tests were to compare the FSM implemented
in RTL source code with the recovered FSM to verify the
correctness. Manually analyzing the RTL source code to
construct a FSM can lead to possible errors or incom-
plete state spaces. Therefore, more work will be done to
automate the verification process for the REFSM tools.

References

[1] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and J. M.
Smith, “Overcoming an untrusted computing base: Detecting
and removing malicious hardware automatically,” in Proceed-
ings of IEEE Symposium on Security and Privacy, 2010, pp.
159–172.

[2] C. Sturton, M. Hicks, D. Wagner, and S. King, “Defeating
UCI: Building stealthy and malicious hardware,” in 2011 IEEE
Symposium on Security and Privacy (SP), 2011, pp. 64–77.

[3] M. Banga and M. Hsiao, “Trusted RTL: Trojan detec-
tion methodology in pre-silicon designs,” in IEEE Interna-
tional Symposium on Hardware-Oriented Security and Trust
(HOST), 2010, pp. 56–59.

[4] E. Love, Y. Jin, and Y. Makris, “Proof-carrying hardware in-
tellectual property: A pathway to trusted module acquisition,”
IEEE Transactions on Information Forensics and Security,
vol. 7, no. 1, pp. 25–40, 2012.

[5] Y. Jin and Y. Makris, “Proof carrying-based information flow
tracking for data secrecy protection and hardware trust,” in
IEEE 30th VLSI Test Symposium (VTS), 2012, pp. 252–257.

[6] ——, “A proof-carrying based framework for trusted micropro-
cessor IP,” in 2013 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2013, pp. 824–829.

[7] Y. Jin, B. Yang, and Y. Makris, “Cycle-accurate information
assurance by proof-carrying based signal sensitivity tracing,”
in IEEE International Symposium on Hardware-Oriented Se-
curity and Trust (HOST), 2013, pp. 99–106.

[8] D. Lin, S. Eswaran, S. Kumar, E. Rentschler, and S. Mitra,
“Quick error detection tests with fast runtimes for effective
post-silicon validation and debug,” in Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibi-
tion, ser. DATE ’15, 2015, pp. 1168–1173.

[9] Y. Jin and Y. Makris, “Hardware Trojan detection using
path delay fingerprint,” in IEEE International Workshop on
Hardware-Oriented Security and Trust, 2008, pp. 51–57.

[10] C. Lamech, R. Rad, M. Tehranipoor, and J. Plusquellic, “An
experimental analysis of power and delay signal-to-noise re-
quirements for detecting Trojans and methods for achieving
the required detection sensitivities,” IEEE Transactions on In-
formation Forensics and Security, vol. 6, no. 3, pp. 1170–1179,
2011.

[11] DARPA, Microsystems Technology Office, “Integrity and reli-
ability of integrated circuits (IRIS),” 2010.

[12] W. Li, Z. Wasson, and S. Seshia, “Reverse engineering circuits
using behavioral pattern mining,” in Hardware-Oriented Secu-
rity and Trust (HOST), 2012 IEEE International Symposium
on, 2012, pp. 83–88.

[13] W. Li, A. Gascon, P. Subramanyan, W. Y. Tan, A. Tiwari,
S. Malik, N. Shankar, and S. Seshia, “Wordrev: Finding
word-level structures in a sea of bit-level gates,” in Hardware-
Oriented Security and Trust (HOST), 2013 IEEE Interna-
tional Symposium on, 2013, pp. 67–74.

[14] P. Subramanyan, N. Tsiskaridze, W. Li, A. Gascon, W. Y. Tan,
A. Tiwari, N. Shankar, S. Seshia, and S. Malik, “Reverse engi-
neering digital circuits using structural and functional analy-
ses,” Emerging Topics in Computing, IEEE Transactions on,
vol. 2, no. 1, pp. 63–80, 2014.

[15] K. S. McElvain, “Methods and apparatuses for automatic ex-
traction of finite state machines,” U.S. Patent 6 182 268, 2001.

[16] L. Yuan, G. Qu, T. Villa, and A. Sangiovanni-Vincentelli, “An
fsm reengineering approach to sequential circuit synthesis by
state splitting,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 27, no. 6, pp. 1159–
1164, 2008.

[17] Y. Shi, C. W. Ting, B.-H. Gwee, and Y. Ren, “A highly efficient
method for extracting fsms from flattened gate-level netlist,”
in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE
International Symposium on, 2010, pp. 2610–2613.

[18] E. I. Goldberg, M. R. Prasad, and R. K. Brayton, “Using sat
for combinational equivalence checking,” Design, Automation
and Test in Europe, 2001., pp. 114–121, 2001.

[19] W. Imrich, “Factor cardinal product graphs in polynomial
time,” Discrete Mathematics, vol. 192, no. 1-3, pp. 119–144,
1997.

[20] https://www.trust-hub.org/.

[21] Oregano Systems, “8051 IP core,”
http://www.oreganosystems.at/?page id=96.

[22] D. Sullivan, J. Biggers, G. Zhu, S. Zhang, and Y. Jin, “FIGHT-
metric: Functional identification of gate-level hardware trust-
worthiness,” in Design Automation Conference (DAC), 2014.

[23] http://isis.poly.edu/esc/2008/index.html.

[24] Y. Jin, N. Kupp, and Y. Makris, “Experiences in hardware Tro-
jan design and implementation,” in IEEE International Work-
shop on Hardware-Oriented Security and Trust, 2009, pp. 50–
57.

7B-1

660

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /CarbonBlock
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /HelveticaNarrow
 /HelveticaNarrowBold
 /HelveticaNarrowBoldLefty
 /HelveticaNarrowBoldOblique
 /HelveticaNarrowLefty
 /HelveticaNarrowOblique
 /Helvetica-Oblique
 /HGGothicE
 /HGGothicM
 /HGGyoshotai
 /HGKyokashotai
 /HGMaruGothicMPRO
 /HGMinchoB
 /HGMinchoE
 /HGPGothicE
 /HGPGothicM
 /HGPGyoshotai
 /HGPKyokashotai
 /HGPMinchoB
 /HGPMinchoE
 /HGPSoeiKakugothicUB
 /HGPSoeiKakupoptai
 /HGPSoeiPresenceEB
 /HGSeikaishotaiPRO
 /HGSGothicE
 /HGSGothicM
 /HGSGyoshotai
 /HGSKyokashotai
 /HGSMinchoB
 /HGSMinchoE
 /HGSoeiKakugothicUB
 /HGSoeiKakupoptai
 /HGSoeiPresenceEB
 /HGSSoeiKakugothicUB
 /HGSSoeiKakupoptai
 /HGSSoeiPresenceEB
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MingLiU
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /NewCenturySchlbk-Bold
 /NewCenturySchlbkBoldCn
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbkBoldLeftie
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewCenturySchlbkRomanCn
 /NewCenturySchlbkRomanLeft
 /NewGulim
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OCRB
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /UnDotum
 /UnDotum-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

