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Abstract— Proliferation of distributed Cyber-Physical Sys-
tems has raised the need for developing computationally effi-
cient security solutions. Toward this objective, distributed state
estimators that can withstand attacks on agents (or nodes)
of the system have been developed, but many of these works
consider the estimation error to asymptotically converge to zero
by restricting the number of agents that can be compromised.
We propose Resilient Distributed Kalman Filter (RDKF), a
novel distributed algorithm that estimates states within an
error bound and does not depend on the number of agents
that can be compromised by an attack. Our method is based
on convex optimization and performs well in practice, which
we demonstrate with the help of a simulation example. We
theoretically show that, in a connected network, the estimation
error generated by the Distributed Kalman Filter and our
RDKF at each agent converges to zero in an attack free and
noise free scenario. Furthermore, our resiliency analysis result
shows that the RDKF algorithm bounds the disturbance on the
state estimate caused by an attack.

I. INTRODUCTION

Distributed (or networked) Cyber-Physical Systems (CPS)
are the result of seamless integration of computational, phys-
ical, and network components. They are becoming increas-
ingly ubiquitous in many industrial sectors such as energy,
space, health-care, agriculture, transportation, building au-
tomation, and manufacturing. Application of distributed CPS
in such diverse sectors is forcing system developers to think
beyond their conventional design process. In addition to the
standard design specifications, they are required to consider
the uncertainties arising from such systems operating in com-
plex, unpredictable, and contested environments. Security
is another major concern for distributed system developers.
Recent real-world attacks such as the massive power outage
at the Ukrainian capital by the Crash Override malware [1],
leveraging phishing emails to cause multiple component fail-
ure at a German steel mill [2], and compromising sensors and
communication network of semi-automated ground vehicles
[3], has raised the need for secure distributed systems.

Unlike IT systems where cybersecurity entails protection
of data, cyber attacks on a networked CPS can impact the
physical dynamics of the system by corrupting the state
estimates of some of its components. Thus, such systems
pose new security issues, which cannot be addressed with
the existing cybersecurity or benign fault detection solutions.
In the quest for building a secure distributed CPS, early
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researchers have developed centralized and decentralized
attack resilient filters for CPS, which requires aggregation
of sensor measurements at a particular location or at all the
components of the system for state estimation [4], [5].

Due to the computational inefficiency of both centralized
and decentralized approaches, efforts have been made to-
wards the design of distributed state estimators, where a
component (or agent) of the networked CPS asymptotically
estimate the system state based on partial information of the
state from its neighbors [6]–[8]. Most of these methods are
variations of the Distributed Kalman Filter (DKF) of [6]. The
earliest DKF algorithm solved the estimation problem in two
steps: in the first step, a dynamic average-consensus filter
was used for fusion of sensor and covariance data and in the
next step Kalman filter update rules were used for recursively
estimating the states. Convergence of the DKF depended on
the topology of the communication network. Subsequently,
single time scale strategies were developed for the DKF.

Until recently, very few attempts were made on designing
attack resilient distributed state estimators [9]–[11]. Khan
and Stankovic [9] proposed attack detection and single mes-
sage exchange state estimation methods for a compromised
communication scenario. Their estimator relied on statistical
consistency of nodal and local data sets and physical-layer
feedback. Matei et al. [10] designed a multi-agent filtering
scheme in conjunction with a trust-based mechanism to
secure the state estimates of power grids under a false data
injection attack. In their approach, an agent of the grid
computes local state estimates based on their own measure-
ment and of their trusted neighbors. However, both [9], [10]
did not provide any theoretical guarantees of their methods.
Mitra and Sundaram [11] developed a secure distributed
observer for the Byzantine adversary model, where some
nodes of the network were compromised by an adversary.
Prior to state estimation, they decomposed the linear system
model using Kalman’s observability decomposition method.
Then, Luenberger observer at each node estimated the states
corresponding to detectable eigenvalues. The undetectable
portions of the states at each node were estimated using
a secure consensus algorithm, which used measurements
of well-behaving neighboring nodes. However, their method
requires the network to be highly connected and they assume
that only a small number of nodes are corrupted; and this
number is known for their algorithm. In addition, they
assume that the system matrix A only has simple and real
eigenvalues, which might not hold in practice.

In this paper, we model the distributed CPS as a linear
time-invariant system. A malicious attack corrupts the sensor
measurements of some agents of the system. Consequently,
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based on DKF, we develop Resilient Distributed Kalman
Filter (RDKF), which is resilient to attacks and we provide
theoretical guarantees. We show the asymptotic convergence
of estimation error to zero for both DKF and RDKF when
there is no attack and no noise and our resiliency analysis
shows that the disturbance on the state estimate of RDKF
caused by an attack is bounded. Compared to [11], our
RDKF and its analysis does not make assumptions on the
structure of the graph except being connected, the number
of corrupted nodes, and the eigenvalues of system matrix A.
The unique features of our method are:
• Our method can recursively estimate states of a dis-

tributed CPS without considering the number of neigh-
bors of an agent that can be compromised. This particu-
lar characteristic separates our method from the rest and
is effective in scenarios where adversaries might exist
in greater numbers.

• Our method can approximately (within an error bound)
reconstruct the system states and its performance does
not degrade (beyond an upper bound) with the magni-
tude of the attack.

The rest of the paper is organized as follows: In Section
II, we formulate the problem and describe the distributed
CPS model and the measurement attack model. DKF, RDKF,
and their performance analysis are explained in Section III.
The effectiveness of RDKF is demonstrated on numerical
examples in Section IV. Final conclusions are drawn in
Section V and proofs are given in the Appendix.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

A. Notations

We assume that there are n agents, X , {1, 2, . . . , n}, in
the distributed CPS, whose communication with each other
can be described by an undirected graph G = (V, E). In the
graph, nodes are the number of agents, V = X, and edges,
E = V × V , represent communication between them. Here,
(i, j) ∈ E is a bi-directional edge between i and j, that enable
them to send and receive messages among themselves, but
not simultaneously. We assume that every agent in X has a
self loop i.e. (i, i) ∈ E for all i = 1, 2, . . . n. Neighborhood
of i is defined as the set of nodes that are adjacent to it i.e.
N (i) = {i} ∪ {j ∈ V : (i, j) ∈ E} and with whom it can
communicate. Furthermore, we assume that each agent has
an observer for estimating the state of the system. In the
paper, we use the words agent and node interchangeably.

B. System and Measurement Models without Attack

We model the dynamics of the distributed CPS as a linear
time-invariant (LTI) system, which is described below:

xk+1 = Axk (1)

where, xk , [x
(1)
k ,x

(2)
k , . . . ,x

(n)
k ] ∈ Rn is the state vector at

time k ∈ N of the distributed system and A , [Ai,j ] ∈ Rn×n
is the system matrix, with Ai,j representing block matrix of
i and its neighbors j.

In the distributed system, each agent measures the system
state at time k, which is given by y

(i)
k = C(i)xk where,

y
(i)
k ∈ Rq is the measurement from q sensors of the agent

and C(i) ∈ Rq×n is the observation matrix. For analytical
convenience, we represent the aggregated measurement vec-
tors and observation matrices as

yk = Cxk, (2)

where yk , [y
(1)
k ,y

(2)
k , . . . ,y

(n)
k ] and C ,

[C(1),C(2), . . . ,C(n)]. In our model, we assume that
each agent estimates the system state, xk, at each time-step
k based on the measurements gathered from its neighbors
and its own. Also, an agent (good or malicious) is assumed
to transmit the same information to all its neighbors. This
assumption appears in many practical scenarios such as in
vehicular ad-hoc networks.
C. Measurement Model with Attack

We consider an insider attack, where an adversary has
complete control over a set of nodes Va ⊂ V of the
communication network. Such an attacker has knowledge
of the observation matrices, C(j), of its neighbors, system
matrix A, and the communication topology. With this infor-
mation, he/she can influence the state of the system without
affecting the message scheduler of the network. The reason
for considering such a strong adversary model is to show that
our resilient estimator can withstand the worst-case scenario.

The attack is carried out by manipulating the sensor data
of the compromised agents and can be represented by the
following equation:

y
(i),a
k = C(i)xk + a

(i)
k (3)

where, a(i)
k is the attack vector and y

(i),a
k is the corrupted

output of agent i. Such malicious measurements effect the
state estimate of the agent which, when used by its neigh-
bors affect their estimate as well. Consequently, the attack
influences the state estimate of the distributed system. We
provide the following definition of a compromised agent:

Definition II.1. Compromised Agent: An agent i is compro-
mised at time k ∈ N if its attack vector a(i)

k 6= 0.

As the agents are completely controlled by an adversary,
we do not make any assumption on the number of sensors
that were manipulated. Also, unlike the f -adversarial attack
model of [11], where they consider an upper bound on the
number of adversarial neighbors of an agent, we do not
put any such restriction. However, the performance of our
estimator degrades within an error bound as the number of
compromised neighbors of an agent increases.

D. Secure Distributed Estimation Problem

Given a linear time-invariant distributed system of n
agents with a linear measurement model and an undirected
communication graph G, our goal is to design a filter that
can estimate system states such that limk→∞ ‖x̂(i)

k −xk‖ →
0, ∀i ∈ Rn when there is no attack and the estimation errors
are bounded when sensor measurement of a subset of nodes
Va ⊂ V are compromised by an insider attack.

For such an estimator, we make the following assumptions:
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• Matrix (A,C) is detectable of the system. This assump-
tion is in line with the assumption made in [7], [11],
where it is considered a necessary condition for solv-
ing the distributed estimation problem with asymptotic
guarantees.

• Each agent shares their estimated state information with
neighbors via a secure communication channel. Thus,
we do not consider any attack on the network.

• We assume that an agent cannot detect the sensor attack
on its neighbors and thus accepts the corrupted state
estimates from them.

III. SECURE DISTRIBUTED ESTIMATION METHODS

A. Distributed Kalman Filter

In this section, we first analyze the performance of the
DKF for no attack and no noise scenarios. The motivation
behind this analysis are two fold: (i) to the best of our
knowledge, this is the first convergence result on DKF for
no noise and no attack scenarios and thus, is one of the
contributions of this paper and (ii) it forms the basis for the
analysis of our attack resilient estimator in Section III-B.

We investigate the attack free case for the following model,

xk+1 = Axk, y
(i)
k = C(i)xk (4)

We assume that the estimation error covariance matrix, P(i),
is chosen according to the following equation,

P(i)=

(
1

di

∑
j∈N(i)

(AP(j)AT +Σ(j)−1
w )+ C(i)TΣ(i)−1

v C(i)

)
−1

(5)

where, N (i) = {i}∪{neighbors of i in G} and di = |N (i)|,
is the total number of neighbors of node i. By assuming
(A,C) is observable in our model, we get a steady-state
DKF with error covariance matrix, P(i) = limk→∞P

(i)
k ,

of equation (5). Theorem III.1 of this paper states the
convergence result of P(i). While in Kalman filter, Σ

(i)
v and

Σ
(i)
w are commonly used to denote the covariance of the noise

in the system, they can also be treated as parameters for
developing the algorithm in the noise-free setting (Kalman
filter application in the noise-free setting is discussed in
[12]). In principle, they can be chosen to be any positive
definite matrices. The impact of the values of Σ

(i)
v and Σ

(i)
w

on the estimate are discussed in Section III-B.
Now, the distributed estimator has following prediction

rules,

P
(i)
| = AP(i)AT + Σ(i)

w (6)

x̂
(i)
k = P

(i)
k

(
1

di

∑
j∈N(i)

P
(j)−1
| Ax̂

(j)
k−1 +C(i)TΣ(i)−1

v y
(i)
k

)
(7)

where, x̂(i)
k is the state estimate and P

(i)
| is a priori estima-

tion error covariace of agent i. This estimator is motivated
from the DKF studied in [6]–[8].

Before using this estimator, we need to ensure that a
solution to equation (5) exists. Thus, we give the following
theoretical guarantee on the existence of the solution.

Theorem III.1. If the graph G is connected, A is full-rank,
(A,C) is observable, and Σ

(i)
v is full rank for all 1 ≤ i ≤ n,

then there exist {P(i)}ni=1 that satisfy equation (5).

The proof of Theorem III.1 (in the Appendix) shows that
the covariance matrices of the estimator converges when
they are initialized as zero matrices. In comparison, there
exist works on convergence of the covariance matrices of
DKF: [13] proves the convergence of the covariance using
probability theory and [8] performs convergence analysis on
a modified DKF which has one prediction/update step at each
time point. We remark that the convergence analysis in the
standard Kalman filter uses observability assumption and as
such it is the optimal assumption we could make as well.

The following theorem states the main result of distributed
estimation without attacks and noises and its proof is in
the Appendix. This theorem states that the estimation error
converges to zero in the attack free and noise free scenarios.
There exist work on convergence of estimation errors of
DKF. For the noise free case, Li et al. [14] proves that
the estimation error converges to a unique value. However,
we are not aware of any work that has convergence result
for the attack free and noise free scenarios, which we have
considered. Our proof is mainly based on the observation
that the estimation error do not increase over time and as a
result, the estimation error converges.

Theorem III.2. (Convergence of DKF) Under the assump-
tions made in Theorem III.1, the estimate of equation (7)
converges to the correct solution in the sense that for all
1 ≤ i ≤ n, limk→∞ ‖x̂(i)

k − xk‖ → 0 and the convergence
rate is linear.

The result described here is called the “omniscience
property” in [7], [11], which is proved under the same
system setting as Theorem III.2, but for a different estimation
algorithm. We remark that while the condition “(A,C) is
observable” is more restrictive than the condition in [7] that
“(A,C) is detectable”, in practice the difference could be
addressed using the idea of decomposing the system (A,
C, x) into two parts corresponding to stable and unstable
eigenvalues of A. Note that for x, the stable part converges
to zero, thus it is sufficient to investigate the subsystem
of (A, C, x) that is associated with unstable eigenvalues
of A. More specifically, let A = Udiag(S1,S2)U−1 be
the Jordan transformation of A, where U is the similarity
transformation matrix, S1 is a square matrix that contain all
Jordan blocks with stable eigenvalues and S2 consist of all
Jordan blocks with unstable eigenvalues. Then, with x̃k =
U−1xk and x̃k = [x̃1,k, x̃2,k], the state evolution of equation
(4) is equivalent to the following equations: x̃k+1,1 =
S1x̃k,1, x̃k+1,2 = S2x̃k,2. Now, we have ‖x̃k,1‖ → 0 as
k → ∞. Thus, it is sufficient to estimate x̃k,2. To have
the “omniscience property” of the estimation of x̃k,2 from
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y
(i)
k = C(i)Ux̃k ≈ C(i)U2x̃k,2 (U2 is a submatrix of U

corresponding to the component S2), Theorem III.2 implies
that it is sufficient to have the observability of (S2,CU2).
Applying the “Eigenvalue assignment” from [15, Table 15.1],
it can be shown that the observability of (S2,CU2) is
equivalent to the detectability of (A,C).

B. Resilient Distributed Kalman Filter

We discuss the design of our optimization based estimator,
RDKF, which is resilient to attack on sensors of the agents.
We also analyze its performance and prove that when there
is no attack, the estimation errors converge to zero and in
the presence of attack, the estimation errors are bounded.
Our results hold even when the magnitude of the attack is
unbounded.

We investigate the case with attack, which is given by the
following model,

xk+1 = Axk, y
(i),a
k = C(i)xk + a

(i)
k

and we propose our RDKF based on optimization as follows:

x̂
(i)
k = arg min

xk

λ
∥∥∥Σ

(i)− 1
2

v (y
(i),a
k −C(i)xk)

∥∥∥
+

1

di

∑
j∈N(i)

(xk −Ax̂
(j)
k−1)TP

(j)−1
| (xk −Ax̂

(j)
k−1) (8)

Our method is motivated from the DKF as follows.
First, equation (7) can be considered as the following

optimization problem

x̂
(i)
k = arg min

xk

(y
(i),a
k −C(i)xk)TΣ(i)−1

v (y
(i),a
k −C(i)xk)

+
1

di

∑
j∈N(i)

(xk −Ax̂
(j)
k−1)TP

(j)−1
| (xk −Ax̂

(j)
k−1) (9)

To make an optimization-based estimator more robust to
attacks, a commonly used strategy is to use optimiza-
tion with `1 norm on the terms affected by attack [4].
We apply a similar strategy, where we replace (y

(i),a
k −

C(i)xk)TΣ
(i)−1
v (y

(i),a
k − C(i)xk) of equation (9) with its

square root and a parameter, λ, which is similar to giving a
smaller penalty on the attacked measurements, y(i),a

k . This
procedure makes our algorithm more resilient to attacks.
The optimization problem of equation (8) does not have an
explicit solution, but it can be solved efficiently as it is in
convex form.

The choice of λ is critical in our approach and it gives
a balance between the terms,

∥∥∥Σ
(i)− 1

2
v (y

(i),a
k −C(i)xk)

∥∥∥
and

∑
j∈N(i)(xk − Ax̂

(j)
k−1)TP

(j)−1
| (xk − Ax̂

(j)
k−1). Large

value of λ implies more weight is placed on y
(i),a
k , which

includes both true and corrupted sensor values. Although
such a choice of λ makes the estimation error converge to
zero quickly in the absence of attack, it will make the system
unstable in the presence of attack. On the contrary, when λ is
small, it will take longer for the estimation errors to converge
to zero, but the method will be stable against attack.

As Σ
(i)− 1

2
v appears in the term

λ
∥∥∥Σ

(i)− 1
2

v (y
(i),a
k −C(i)xk)

∥∥∥, Σv will have an impact
different from λ on state estimates: when Σv is large, it will
take longer for the estimation errors to converge to zero,
but the method will be stable against attacks. Similarly,
large value of Σw will result in large P| and it will have
an impact similar to Σv (and similar to that of λ) on state
estimates. Furthermore, experimental results in Section IV
demonstrate the impact of these three parameters on state
estimation error.

To analyze convergence and resiliency of RDKF, we
consider two scenarios:

1) All agents are benign and the system operates normally
2) Some agents are compromised of the distributed system

We provide the following theoretical guarantee (proof is in
the Appendix) for the first scenario. It suggests that when the
initial estimation errors ê

(i)
0 are not too large, the algorithm

obeys the “omniscience property” and the estimation error
converges to zero. Now, the proof of this theorem is based on
the structure of the proof of Theorem III.2, i.e., we first show
that the estimation error do not increase over time and then,
with some additional arguments, we show that the estimation
error converges to zero.
Theorem III.3. (Convergence of RDKF) Under the as-
sumptions of Theorem III.1, if the initial estimation errors
{ê(i)

0 }ni=1 satisfy the following condition: For any x that
satisfies ‖Σ(i)− 1

2
v C(i)x‖ = 2λ, it has the property that

xTP(i)−1x ≥ ê
(i)T
0 P(i)−1ê

(i)
0 , then, for the first scenario

without attack, the sequence produced by equation (8) con-
verges to the correct solution i.e. for all 1 ≤ i ≤ n,
limk→∞ ‖x̂(i)

k −xk‖ → 0 and the convergence rate is linear.

We remark that, while this theorem makes the assumption
that the initial estimation errors {ê(i)

0 }ni=1 are not very large,
in practice we notice that our algorithm converges even when
initial estimations of x(i)

0 are bad.
For the second scenario, the following resiliency theorem

(proof in the Appendix) states that no matter how large
the magnitudes of the attack, the deviation of the state
estimate of the algorithm is bounded. Consequently, even
during worst-case attack scenario, the error of the state
estimate is upper bounded. Compared to Theorem III.3,
which states that the estimation errors converge to zero when
there is no attack, this result suggests that the estimation
errors are bounded during attack. This result separates our
RDKF from the traditional DKF of Section III-A, where an
unbounded attack could result in an unbounded estimation
error. Furthermore, our analysis and results are different from
the theoretical guarantees given for the resilient distributed
estimator of [11]. We have made fewer assumptions on the
eigenvalues of A and the graph structure of the network; and
we only show that the estimation error is bounded (rather
than convergence to zero result shown in [11]).
Theorem III.4. (Resiliency of RDKF) Consider the opti-
mization problem, equation (8), whose solution x̂

(i)
k is based

on y
(i),a
k and {x̂(j)

k−1}j∈N(i) . In this sense, we can write the
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Fig. 1: Communication network of a distributed system of 10
agents and 12 edges

solution of equation (8) as a function g : Rq ×Rn×|N(i)| →
Rn as follows:

x̂
(i)
k = g(y

(i),a
k , {x̂(j)

k−1}j∈N(i)).

The solution is resilient to the attack on y
(i),a
k as follows

‖g(y
(i),a
k , {x̂(j)

k−1}j∈N(i))− g(y
(i)
k , {x̂(j)

k−1}j∈N(i))‖

≤λdi

∥∥∥∥∥∥∥
 ∑
j∈N(i)

P
(j)−1
|

−1

Σ
(i)− 1

2
v C(i)

∥∥∥∥∥∥∥ . (10)

This theorem implies that the disturbance on the state
estimate caused by an arbitrary attack on y

(i),a
k is bounded.

Although, the state estimates and the measurements are
updated with time, the bound on error is independent of
time. It also partially explains the observations made later
in Section IV that large Σ

(i)
v corresponds to more stable per-

formance of the estimator during an attack, as from equation
(10) (representing the maximum additional estimation error
that can be caused by an attack), large Σ

(i)
v gives a smaller

upper bound for the additional estimation error.
However, we remark that this theorem only captures the

impact of sporadic attack (an attack which do not occur
continuously for long duration of time) on the estimation
of x̂

(i)
k . Following this theorem, if the estimation error is

small enough to satisfy the condition of Theorem III.3 after
an attack, then we can consider such an estimation error as
the “initial estimation error” in Theorem III.3 and use it to
show that despite the attack, the estimation errors of our
RDKF still converge to zero, provided we have attack-free
measurements after the sporadic attack.

The long term impact of persistent attack is not considered
in this paper and we leave it as possible future work.

IV. EXPERIMENTAL RESULTS

In this section, we use a numerical example to demonstrate
the effectiveness of our RDKF approach against sensor
attacks on the nodes of distributed CPS. We represent the
dynamics of the system using a linear time-invariant model
given by equation (1). The sensor measurement of an agent
with and without attacks are given by equation (2) & equa-
tion (3). We generate a random system matrix, A, which is
nondegenerate and random output matrices for all the agents,
{Ci}ni=1. The dimension of the state x is 20 and the number
of sensors per agent is 14.

The undirected communication graph of the system, as
shown in Fig. 1, consists of 10 randomly located agents

and 12 edges. Different shades of color are representative
of nodes with different degrees. We simulate the distributed
system dynamics, communication graph, and the sensor
attack on nodes in MATLAB.

We first evaluate RDKF over the attack free scenario.
Fig. 2 compares state estimation error of all the agents over
a time frame of 50 (0 : 50). Along the Y-axis is normalized
estimation error of all the agents for one of the states of the
agents and X-axis represent time in seconds. We observe that
the state estimation error is less than 0.7 for all the agents
and they converge to zero within 10 seconds.
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Fig. 2: Performance of RDKF in the attack free case.

Next, we consider the scenario where an adversary
corrupts sensor measurements of nodes 1, 2, 3, 5, 8 & 10
after a certain time point. In case of the attack, malicious
data of random value are added to all the sensor output of
the compromised nodes. We assume that the attack vector
{aik}i=1,2,3,5,8,10 is injected after time point k = 20 into
the nodes and the probability of its occurrence at any time
after initiation at the nodes is pa = 0.9. For instance, in
our experiment, the attack occurs at time points such as
22, 25, 32, 35, 37 and 45. Fig. 3 provides comparison of
estimation error among all nodes for all the normalized
states. For the RDKF estimator, (λ,Σv,Σw) = (1, I, I)
is used. We observe that the estimation errors are high for the
neighbors,{3, 4, 8}, {9}, {1, 8}, {6, 7}, {1, 3, 6, 7, 10}, {8, 9},
of the compromised nodes 1, 2, 3, 5, 8, 10, respectively. Also,
estimations of the neighbors, {5, 8} of nodes 6, 7 and the
neighbors, {2, 10} of node 9 are corrupted. Note that the
estimates obtained from our filter at attack time points
does not get unbounded even when more than half of the
neighbors of an agent/node are compromised. At all other
time points (when there is no attack), our method performs
as well as in the attack free case.

We also tried various values of parameters λ, Σv and Σw.
In particular, we follow the setup of Fig. 3, with (λ,Σv,Σw)
replaced by (0.1, I, I), (1, 10I, I) and (1, I, 10I) respectively,
and their results are shown in Fig. 4. As stated in Section III-
B, smaller λ or larger Σv gives slower convergence at the
beginning, but more stable performance to attacks; and larger
Σw gives faster convergence at the beginning, but less stable
performance to attacks.

We also check the performance of the DKF estimator,
given by equation (9) during attacks, as is shown in Fig. 5.
We see that by replacing (y

(i),a
k −C(i)xk)TΣ

(i)−1
v (y

(i),a
k −

C(i)xk) of equation (9) with its square root (and with a

5145



1 6 11 16 21 26 31 36 41 46

Time(s)

0

0.5

1

1.5

2

2.5

3

E
st

im
at

io
n 

E
rr

or

Fig. 3: Performance of RDKF during attack. Agents under attack
are marked with (a). Estimation error is bounded and small.

scalar λ), RDKF becomes more resilient and its estimation
errors becomes bounded during attacks.

V. CONCLUSION

In this paper, we have proposed RDKF, a novel attack
resilient distributed state estimation algorithm that can re-
cursively estimate states and bounds the disturbance on the
state estimate caused by an attack. We prove and show using
a numerical example that the estimation error of our method
asymptotically convergence to zero when there is no attack
and noise, and has an upper bound during attack. In future,
we plan to improve our current analysis on estimation errors
to stochastic systems and investigate the interplay between
network connectivity, system stability, and convergence.
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Fig. 4: Performance of RDKF during attack, with different
parameter values. The three figures correspond to small value of

λ, large value of Σv and large value of Σw respectively.
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APPENDIX

Proof of Theorem III.1
In the proof, both A < B and B 4 A means that A−B

is positive semidefinite.
Here, we let P(i)

0 = 0 for all 1 ≤ i ≤ n and show that for
the sequence P

(i)
k generated by P

(i)
k|k−1 = AP

(i)
k−1A

T +Σ
(i)
w

and P
(i)
k =

(
1
di

∑
j∈N(i) P

(j)−1
k|k−1 + C(i)TΣ

(i)−1
v C(i)

)−1

,

the limit, limk→∞P
(i)
k , exist and it is a positive definite

5146



matrix for all 1 ≤ i ≤ n. If this is true, then P(i) =
limk→∞P

(i)
k is a solution of equation (5).

We will first show that P
(i)−1
1 is bounded below by a

positive definite matrix. For k = 1, we have P
(i)−1
1 <

C(i)TΣ
(i)−1
v C(i), which is positive semidefinite with range

being the row space of C(i), i.e., {C(i)T z : z ∈ Rq}.
If j ∈ N (i) (and by definition i ∈ N (i)), then P

(i)−1
2 <

1
di

(AP
(j)
1 AT+Σ

(j)
w )−1+C(i)TΣ

(i)−1
v C(i)+ 1

di
(AP

(i)
1 AT+

Σ
(i)
w )−1, which is a positive semidefinite matrix of range
{C(i)T z1 + AC(i)T z2 + AC(i)T z3 : z1, z2, z3 ∈ Rq}. By
applying the same procedure to time k = 3, 4, · · · , we verify
that for sufficiently large k, the range of P(i)−1

k can be given
by the linear combination of ⊕j{Al(j)C(j)T z} ∀j such that
there exists a path from j to i of length l(j). It can be shown
that for sufficiently large k, the set contains the range of
ArCT ,Ar+1CT ,Ar+2CT , · · · for some positive integer r.
When A is full-rank and (A,C) is observable, this range is
Rn and as a result, P(i)−1

k is larger than a positive definite
matrix with full rank. This suggests that P(i)

k is bounded by
a positive definite matrix from above.

In addition, by induction it can be shown that P
(i)
k is

strictly increasing in the sense that P
(i)
0 4 P

(i)
1 4 P

(i)
2 4

· · · . Since, the sequence is bounded above, its limit exist. In

addition, P
(i)
k <

(
1
di

∑
j∈N(i) Σ

(j)−1
w + CT

i Σ
(i)−1
v Ci

)−1

Thus, its limit is positive definite. �
Proof of Theorem III.2

We specify the estimation error as e
(i)
k = x̂

(i)
k − xk and

show that,

e
(i)T
k P(i)−1e

(i)
k ≤

1

di

∑
j∈N(i)

e
(j)T
k−1 P(j)−1e

(j)
k−1. (11)

Applying equation (9), we have e
(i)
k = arg minek

f(ek),
where

f(ek) = (C(i)ek)TΣ(i)−1
v (C(i)ek)+

1

di

∑
j∈N(i)

(ek −Ae
(j)
k−1)TP

(j)−1
| (ek −Ae

(j)
k−1) (12)

Using the fact that ∇f(ek)|
ek=e

(i)
k

= 0, we have

(C(i)e
(i)
k )TΣ(i)−1

v (C(i)e
(i)
k )

+
1

di

∑
j∈N(i)

(e
(i)
k −Ae

(j)
k−1)TP

(j)−1
| e

(i)
k = 0. (13)

Combining equation (13) with f(e
(i)
k ) ≥ 0 gives,

1

di

∑
j∈N(i)

(Ae
(j)
k−1)TP

(j)−1
| Ae

(j)
k−1

≥ (C(i)e
(i)
k )TΣ(i)−1

v (C(i)e
(i)
k ) +

1

di

∑
j∈N(i)

e
(i)T
k P

(j)−1
| e

(i)
k

= e
(i)T
k P(i)−1e

(i)
k . (14)

Since, P(i)−1 −ATP
(j)−1
| A = P(i)−1 −AT (AP(i)AT +

Σ
(i)
w )−1A = P(i)−1 − (P(i) + A−1Σ

(i)
w A−1T )−1 is pos-

itive semidefinite, equation (14) implies equation (11), and
equation (11) implies that max1≤i≤n e

(i)
k P(i)−1e

(i)
k does not

increase as a function of k and thus, it converges. However,
it remains to be proven that it converges to zero. If this
is not the case, then equation (14) achieves the equality
(Ae

(j)
k−1)TP

(j)−1
| Ae

(j)
k−1 = e

(j)T
k P(j)−1e

(j)
k and it implies

that e(j)
k−1 = 0 for all j ∈ N (i). Combining it with Ae

(j)
k−1 =

e
(i)
k (which follows from the equality f(e

(i)
k ) = 0), we

get e
(i)
k = 0. This also suggests that the ratio of the two

sides of equation (11) is strictly less than 1, implying that
max1≤i≤n e

(i)
k P(i)−1e

(i)
k converges linearly. �

Proof of Theorem III.3

We follow the proof of Theorem III.2 and differentiate the
objective function of equation (8), which gives us

λ
(C(i)e

(i)
k )TΣ

(i)−1
v (C(i)e

(i)
k )

‖Σ(i)− 1
2

v (C(i)e
(i)
k )‖

+
1

di

∑
j∈N(i)

(e
(i)
k −Ae

(j)
k−1)TP

(j)−1
| e

(i)
k = 0. (15)

As a result, 1
di

∑
j∈N(i)(e

(i)
k −

Ae
(j)
k−1)TP

(j)−1
| (e

(i)
k − Ae

(j)
k−1) ≥ 0 implies

that 1
di

∑
j∈N(i)(Ae

(j)
k−1)TP

(j)−1
| Ae

(j)
k−1 ≥

2λ
(C(i)e

(i)
k )T Σ(i)−1

v (C(i)e
(i)
k )

‖Σ
(i)− 1

2
v (C(i)e

(i)
k )‖

+ 1
di

∑
j∈N(i) e

(i)T
k P

(j)−1
| e

(i)
k =

e
(i)T
k P(i)−1e

(i)
k , if ‖Σ(i)− 1

2
v (C(i)e

(i)
k )‖ ≤ 2λ.

Using the assumption about the initial estimation er-
rors e

(0)
i in Theorem III.3, it can be proved that

max1≤j≤n(Ae
(j)
k−1)TP

(j)−1
| Ae

(j)
k−1 is decreasing and fol-

lowing the proof of Theorem III.2, it converges to zero
linearly. �

Proof of Theorem III.4

First we introduce the following lemma.

Lemma .1. When A is a square matrix and Q is positive
definite, then the minimizer of xTQx + λ‖Ax − a‖, x̂,
satisfies ‖x̂‖ ≤ λ

2 ‖Q
−1A‖.

Proof. The gradient of the objective function xTQx +
λ‖Ax − a‖ of the minimizer should be zero, i.e. 2Qx̂ +
λA Ax̂−a
‖Ax̂−a‖ = 0. So, x̂ = −λ2Q

−1A Ax̂−a
‖Ax̂−a‖ and ‖x̂‖ ≤

λ
2 ‖Q

−1A‖.

Based on Lemma .1, we have the following result:
For any a1, a2, the minimizers of (x−x0)TQ(x−x0) +

λ‖Ax − a1‖ and (x − x0)TQ(x − x0) + λ‖Ax − a2‖ are
at most λ‖Q−1A‖ apart.

Now, we can prove the theorem. Note that the op-
timization problem of equation (8) leads to: ê

(i)
k =

arg minek
λ
∥∥∥Σ

(i)− 1
2

v (a
(i)
k −C(i)ek)

∥∥∥
+ 1

di

∑
j∈N(i)(ek − Ae

(j)
k−1)TP

(j)−1
| (ek − Ae

(j)
k−1). Thus,

even for different attack vectors a
(i)
k , the difference of their

solutions are bounded above by equation (10). �
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